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LONG-RANGE ELECTROSTATIC AND ELECTROMAGNETIC
INTERACTIONS BETWEEN ATOMS

SUMMARY

The object of this calculation is to examine the contribution to the
interaction energy between two neutral hydrogenic atoms in their ground
.state because of their electrostatic interaction and the presence of an electro-
magnetic radiation field in its '"'vacuum' state. The separation distance R
between the atoms is large compared to atomic dimensions, and is of the
order of the transition wavelength A associated with the 1s-2p atomic
transitions. Thus, the atoms are sufficiently separated so that the over-
lapping of their respective charge distributions is neglected along with ''spin. "
The problem is then handled using nonrelativistic quantum electrodynamics.

The Hamiltonian of the system consists of the following parts: H(O) ,
which corresponds to the sum of the Hamiltonians of the respective isolated

atoras plus the "vacuum'' photon state of the radiation field; H(i) , which
corresponds to the A (p) - P(p) type interactions between the atoms and the

—_— 2
radiation field through the electromagnetic potential A (p); H( ), which

corresponds to the —A.(F) . K(F) type interactions between the atoms and the
radiation field; and Hq’ the electrostatic interaction between the atoms.

Stationary state perturbation theory is then used to obtain the interaction
energy of the system to fourth order in the electron charge e. By retaining
higher order multipoles (up to octupole orders) in the expansion of Hq and

expanding the retardation factor elK ") in K(B’) in a power series, the

interaction energy is obtained, accurate to quadrupole-quadrupole orders.

The results are given as corrections to the various electrostatic
multipoles corresponding to the dipole-dipole, dipole-quadrupole and
quadrupole-quadrupole interactions between the atoms. The inclusion of
the radiation field in the Hamiltonian of the system is found to give rise to
retardation effects in the interaction energy which are a function of the
separation distance R. The dipole-dipole results are in agreement with the
calculations of Casimir and Polder [1] and others. The dipole-quadrupole
approximations can be written as a sum of three quantities proportional to
R-", R-8 and R-°. The R-® term corresponds to the purely electrostatic
interaction and the others result from the inclusion of the radiation field in



the system. In the limit of large R (R>>A), the dipole-quadrupole electro-
static interaction energy (proportional to R-%) is found to be reenforced by
a factor proportional to R-? and diminished by a factor proportional to R-7,
The results go over into the electrostatic case for small R (R<<A), showing
that the retardation effects are unimportant for small separations as in the
dipole-dipole case. The corrections to the quadrupole-quadrupole electro-
static interaction (proportional to R-1% are much more complex. The
resulting expressions consist of terms proportional to R, .... R

The above results are expressed in terms of integral functions over

b= xR, where k is the magnitude of the wave vector ik associated with
the radiation field.

INTRODUCTION

The object of this calculation is to examine the contribution to the
interaction energy between two neutral hydrogenic atoms in their ground
state because of their electrostatic interaction and the presence of an
electromagnetic radiation field in the system. The inclusion of the radiation
field in the Hamiltonian of the system gives rise to retardation effects in the
interaction energy [1] which are a function of the separation R between the
atoms. These effects are unimportant for distances smaller than the wave-
length A, associated with the radiation being considered, and increase in
importance as R approaches A. In the case of atomic systems, the smallest
wavelength associated with atomic transitions is large when compared to the
atomic dimensions (A >> a,, where a; is the Bohr radius); hence, the
problem can be treated using nonrelativistic quantum electrodynamics. This
allows us to neglect the particle "spin' and to use simple product eigen-
functions for the atomic and photon states. In addition, the above simplifica-
tions make it possible to treat the problem using standard nondegenerate
perturbation theory. This feature is crucial since the calculation must be
pushed to fourth order before obtaining non-zero corrections to the interaction
energy due to the radiation field.

This problem was first treated to first order in both the electrostatic
interaction potential and the radiation field (dipole-dipole approximation) by
Casimir and Polder [1]. These authors used an elegant by asymmetrical
method consisting of first treating the interaction between one atom with
the radiation field and then considering this distorted field and the second
atom as the initial configuration for subsequent approximations. Leech [2]
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attempted to solve the problem (to first order) in a more systematic manner
using nondegenerate perturbation theory. His results were in disagreement
with Casimir and Polder, and, later were reported to be in error by Aub,
Power and Zienau [3]. Subsequent calculations by Power and Zienau [4]
using a different method verified Casimir and Polder's results. They applied
straightforward perturbation theory to a reduced interaction Hamiltonian
consisting of only the fransverse component of the electric field vector. In
this reduced Hamiltonian the electrostatic interaction is not given explicitly;
hence if the interaction between the electrostatic interaction potential and the
electromagnetic potential is desired, this method cannot be used. Subsequent
calculations [5] using field theoretic techniques have since established the
correctness of Casimir and Polder's results.

In this calculation the Casimir and Polder results are verified, using
a systematic application of nondegenerate perturbation theory and a conven-
tional expression for the interaction Hamiltonian, The calculations are
extended beyond the dipole approximations of Casimir and Polder, by including
terms up to octupole order in the electrostatic potential, in order to obtain
interaction energies accurate [6] to quadrupole-quadrupole orders, and by
retaining the first five terms in a power series expansion of the retardation
factor of the electromagnetic potential. In this way, corrections due to the
radiation field are obtained for each of the dipole-dipole, dipole-guadrupole,
and quadrupole-quadrupole electrostatic interaction energies. In addition, a
systematic analysis is performed to determine how the electrostatic inter-
action potential is coupled with the electromagnetic potential to produce the
retardation effects to the electrostatic interaction energy of the system.

FORMULATION OF THE HAMILTONIAN

Consider a system of two one-electron neutral atoms separated by a
large distance R, (R >> a;, where a; is the Bohr radius), interacting
through their electrostatic potential Hq in the presence of a radiation field

described by an electromagnetic potential K(?;). In addition, assume the
respective nuclei to be at rest (Born-Oppenheimer Approximation) and
neglect all ""'spin" interactions between particles. The Hamiltonian for this

system is then given by

H = HI+HII+Hq+Hr ; (1)



where H_ and H__ are the Hamiltonians for atoms I and II, given by

I I
2
Z
1 (= e = \? M
Hp = 20 (PI_ c AI) . : (2)
[1'1'

H_ is the electrostatic potential [6] between the two charge distributions

defined in a coordinate system such that R is along the Z axis (Fig. 1)
and given by

- (-1)1‘21~1L11~2L2 47mel (Ly+ Ly)!

H = 1
T L=t L=t gl * L2t 1 [(2L1+ 1) (2Ly + 1)] %

o,
4

M=+1 M* -M"
< Y, (01,00 Y 7 (82, ¢2)
1 2

M=-L [(L1+M)1<L1-M).'<L2-M)!(L2+M)1 ]T/z
< (3)

X

Hr is the electromagnetic field Hamiltonian given by
2 +
H o= ), ), Hex@ (k) &) : (4)
K”><0 A=1

+ —
The creation and destruction operators & }\(K ) and @ }\(K ) are defined

through the quantized vector potentiall K(F) given by

i ¢ 2 1 2 — iK'p + — —iK,‘.p A~
Ale) =5 | Vol KZ:O (CK) >\Z=1 @, (ke - @, (x)e €\ ()

(5)

1. See Heitler's _ng_._ntum Theory of Radiation for the definition of the various
quantities in A (p).
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Expanding equation (2), one obtains

—ﬁl . —ﬁI e?‘ ZI e . . . ez . .
= - - A_ . + + =
HI 2u l?l 2uc ( I PI PI AI) 2uc A
1

(6)

where the first ferm in braces is just the unperturbed Hamiltonian for a
single atom. If one defines the terms in equations (3) and (6) as follows:

(0) _ I' 71 I
H = - , (7)
I 2 -
K 11‘1|
(1) — -e — — — —
eH ' = 2s (AI P + P AI> , (8)
en® - (% .% (9)
I 2uc? I 71 ’
e2u? =g , (10)
q q

then the total Hamiltonian given by equation (1) may be written as

5 (0) (0) (1) (1) 2 (2) (2) (2)
H—HI +HII +e<HI +HII >+e<HI +HII +Hq >+Hr'

Further simplification is accomplished by considering the fact that the
radiation field Hamiltonian, as given by equation (4), has as eigenvalues
the number of photons present in any given state. Thus, if one picks the

vacuum state defined by 1,0,0,...> as the ground state of the radiation
field, there are no photons interacting with the atoms in the ground state, and
Hr may be written as Héo) and combined with HI(O) in equation (7).

Incorporating this modification in the above expression, the total Hamiltonian
may be defined as

B (0. . (0) (0) [ (1) (DN, 2f,, (2) (2) (2)
H = (HI +HII +Hr >+e HI +HH>+e<HI +HII +Hq )

(11)
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If one further redefines the preceding quantities as follows,

/
5® = kHI(O) +HI(IO) +H£O)) , (12)
(1) _ ) (1))
H' = (HI + H , (13)
(14)

2
g® o (@, q@ @)

I II q
one may use perturbation theory techniques to solve the problem by considering
the total Hamiltonian as a series expansion in powers of the electron charge e

given by
(15)

1) | 242

0 (O)+e1H + e

H =¢e H

EIGENFUNCTIONS AND EIGENVALUES

System Eigenfunctions

A systematic study of the interaction between two atoms requires the
knowledge of their respective states given in terms of eigenfunctions of the
system. When perturbation theory is used to treat a given problem, the
unperturbed state eigenfunctions must be determined completelyz.

In this problem, it will be assumed that the atoms of the system are

sufficiently separated so that the overlapping of their respective charge distri-
In this case, the unperturbed nth state of the system

butions can be neglected.
can be expressed as products of eigenfunctions given by

0  _ 0 5 (0) 1 (0)
Yoy = Ya ¥ D Y d (x) (16)

2. This state is sometimes referred to as the ground state of the system.



If one examines the system such that the unperturbed state corresponds to the
ground state, then equation (16) is replaced by

(0)
(0)

(0)
1

(0) (0)

Y o) = % (r) : (17)

(I p, () ¢

(0)

where { (I) represents the unperturbed eigenfunction for atom I in its
(0)
(0)

ground state (sometimes referred to as the "'vacuum' state). Since hydrogenic
eigenfunctions are used for the atomic states, and the electromagnetic potential

lowest state, and ¥ (r) represents the state of the radiation field in its

+ — —
is expressed in terms of creation and destruction operators @& N (k), &}\(K) ,

alternate definitions for the eigenfunctions given in equation (16) are necessary.

Let us define ¢1(10)(N) as follows:
ZPI(IO)(N) = ‘ NA(T;), > I(n) II(n> , (18)
‘%(40) = , N}\(I{'), > I(n,£, m) H(n,l,m)> i (19)

If one wishes to express an intermediate state in which atoms I and II are not .
necessarily in the same state, and the photon state contains more than one |
photon having different parameters x,A then one denotes this state by

Y1 = ‘ N}\(?), N}'\,(?), > I(n) II(m> , (20)

where atom I is found in the state having quantum numbers n; atom II has
guantum number m; the photon state contains N photons having parameters
k,A; and N' photons with parameters «',A'.

The hydrogenic eigenfunctions are defined by [7]

_ — m - m
by @ = R DY (01,00 = !Rn’1(1> ||Y£ (1> (2

b b

where the Rn P (_17) and Y;n(e, ¢) are also defined in Reference 7.



The specific eigenfunctions z,bn f m used in this calculation are those

corresponding to the ground state for which n=1, £ =0, m = 0;
Zr
3 L
Z /2 - a
e , (22)

_ 0 .1 [ Z
1,00 = |R1,o>|Yc> N ('ao

and for the 2p states for which n=2, £ =1, m =0, + i:

3/ =L
0 1 Z L/ 2
Y2,1,0 = R21>|Y1>= (a—) (—aI;)e " como
2 H H 0 0
aar (23)
+1 i (z\" {2\ "7a
by 4 = | By gy Y1 = . —=]e ¥ sin 6 cos ¢,
s 4 ) 0 0
W (24)
3/ “Lr
— 2 -
V2,1,-1 = R21> Y1>=—1—<EZ—) <%>e g g
s 4, = ’ 0 0
2T (25)

The above functions, together with the photon states, redefined as

(0) - —
z,l)(N)(r) —I, ...N}\(K), > , (26)
and whose vacuum state is given by
(27)

(O)(r) El,...O,...> s

Y (0)

completely define the system u_nder consideration,



System Eigenvalues

Having defined the eigenfunctions and their various forms, one proceeds
to describe the eigenvalues corresponding to the above eigenfunctions. First,
the hydrogenic eigenfunctions are solutions for the unperturbed state of the
system. The photon states are eigenstates of the radiation field Hamiltonian

Hr given by equation (4); that is,
LN, (), >

. NA(K), > . (28)

In addition, these photon states satisfy the usual relations given below:

.>=~F<‘NIT) ',...(N+1),..> , (29)
(T’,...N,..> =Wl,...(N-1),..> , (30)
@ a 'N>=mm 'N> , (31)
N> = N (N+1) N (N+1) !N> . (32)

It is clear from equation (28) that the vacuum state is an eigenstate of Hr

;;hcx a5 () @, ()

ZthxN (K)
K A

ea

with eigenvalue N = 0; hence, one is justified in including H with the
unperturbed portion of the Hamiltonian.

Other relations between the photon eigenstates and the field operators
which will be used later on are given below for future reference [8]:

— v
, NA(K), NA,(K )>

= NNT A (N+1) '(N+1)}\(?), (N-1);\,(?’)> , (33)

+ — —
@?\(I{) @A'(K')

10



) NA(K), N;\'(K')>

= N (N+1)" NN l(N_i)K(?)’ (N+1);\,(?')> ; (34)

Q, («) @, . (k")

+ o= ot e e
@, (k) @, (k") i » Ny k), o N ('), >

= N (N+1) ' N (N+1) l(N+1)}\(Tc.), (N+1);\,(?’)> , (35)

@ () @ (') ‘ N (), . N;\,(E">,>
= NN' NN I (N-1)K(E'), o (N-1) (") > . (36)

The energy eigenvalue for the system may now be expressed in terms of the
unperturbed eigenfunctions using nondegenerate perturbation theory reported in
an earlier NASA publication [9]. Thus, the solution to the perturbed eigen-
value problem,

HY =E ¥ , (37)

may be obtained by expressing H as a series expansion of the form

0) , o), 25@) | 3y, 4@ (38)

H =H +eH +

whose eigenvalue may be expressed as
(0) 1) 2_(2) 3..(3) 4_(4)

E =E +eE( +e E +e E +e E + ..., (39)
n n n n n n

i1



(0)
n
of matrix elements of the perturbation Hamiltonians H () , 1# 0, Since one
desires to obtain results to the fourth order, one needs all the terms indicated

in equation (39). Buf since H as given by equation (38) contains only

where the energy corrections to ground state energy E are given in terms

H(i) and H(z) , one can obtain the terms corresponding to equation (39)

directly from Reference 9, by letting H(3) and H(4)

this, the resulting expressions are:

equal to zero. Doing

E(i) = H(i) s . (40)
n nn
(1) (1)
H H
(2) _ .(2) nn' n'n
n n'
(1) (1)
E(3) H(i) Z nn' “"n'n
n

- m n'#n (E(O)—E(?) )2
n n

Hu)mm+HM)wu)

+ Z nn' n'n nn' n'n
n'#n (E(O) - E(?))
n n
o Hond oo o -
+ H
mmmwl<gm_Eqv<ﬂw_E9»
n n n n

12



{, (2) (2) 1) (1)
B g _ 7 Hont Pam _ 5@ Pont otn .
" n'n (E(O) - E(?)> n'#n (E(O) _g'0 )
n n n n

: . 2 2
g g [(H(p') +<H(1)>J
nn n'n n'n nn |

+ 3
nén (E(O) - E(O))

n n'
g g @ (ZE(m N E(g))
_H(i) E nn' "n'n" "n''n n n n
T jZn ni#n (E(O) - E(O))(E(O) - E(O))2
n n' n n'
( a2 gD g, (1) @) @) () () (@) )
+Z Z Y nn n'n _nn”mnn n'n n'm nn n'n n'n
n'%n n'#n ( g0 _ E(g)) <E<0> _ E(?,’>
n n n
ai ul) wl)
+n§n n’én n'zin (E(O) - E(O) ) <E(O) - E(0)><E(O) - E(O) )
n n' n n" n n'"'
(43)

The interaction energy En’ given in equation (39), may be evaluated to the

desired fourth order using the above results.

CALCULATION OF GENERAL MATR IX ELEMENTS

Introduction

Analysis of the terms in equations (40) through (43) shows that the

X . . 0 . . .
corrections to the interaction energy EI(1 ) consist of various matrix elements

of the form

a® g
nn nn

g® | og® i=1

nlnH 2 nllnl” ’

13



These terms need to be evaluated and then combined in order to obtain the
inferaction energy between the two atoms. The above operations are simplifed
considerably if one neglects those terms which correspond to interactions
between the radiation field and either one of the atoms [10]. Thus in sub-
sequent discussions En will refer to only the interaction energy between

atoms I and II, either through electrostatic interactions or through the
radiation field. In the course of evaluating the various corrections to the
interaction energy, an analysis is made on all the terms which make up the
overall interaction energy to fourth order.

First-Order Corrections

One proceeds to evaluate the various matrix elements corresponding

1) energy corrections. The first-order correction E (1)

n n
(1) _ (1) _ (0) (0)
By = Hpp = <¢n an > ' (44)

Using the unperturbed eigenfunctions given by equation (16), the definition

for H(i) given by equation (13), and since HI(11)I
equation (44) simplifies to ’

(1) _ /00 5 (0 (1) |, 5 (0
E, —<¢n (I)zp(N)(r)l H| 'zpn (I)zp(N)<r>

to the E is given

by

ey

affect only atoms I and II,

(0) (0) (1) (0) (0)
+<¢n Wy ey @ By 3,7 @ ¢ 0 () . (48)
Before evaluating equation (45), one simplifies the expression for Hl(l) as
given ill. equation (8) be recalling that in obtaining K(T)’) , the condition
V ¢« A(p) =0 was used. (See References 10 and 11 for details.) Since
[K,'i;] =-iAV. 7{, one notes that A and P commute and Hl(l} may now

be expressed as

14



’ 1
gt 2 c [2mh 5 1 f
T\ 2uc i Vol. [, \ cx

- i—»_ — + - —i,?». E; A . F ;. .
x {@, (K} e GE & () « BTy (46)
1

The specific position dependence in the above expression for HI( ) is
included because the operators P and A refer to two different coordinate
Their relationship is best described by Figure 2 which also gives

systems.
the following relations:

N = RI+ ry o, P2 = RII+ Ty ’ (47)
where EI and T’:H are related by (Fig. 1)

R = R - R (48)

Analysis of terms in equation (46) shows that Hl(i) consists of products

proportional to

— A - = > A - -
&A(K) 6}\( )+ Pr(ry) , (f}\(K) 6}\(/‘6)  Pp(ry) . (49)

Since the momentum operators act only on the atomic states, and the field

—_— 4+ —
operators @A(K) s @A(K} affect only photon states, one obtains

~a = B 0@ @ o
&, () €, () - P(ry ’zpn & w(N)(r>>

N <1>>

= € () NN |¢f§’_1)<r)> . B @)
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Figure 2,

Electromagnetic potential coordinates.




Using this result, the first ferm in equation (45) is proportional to

(0) (0) (0) = (0)
<D(N)(r) ¢(N;1)(r> Qn (I)’ Pry) | ¥ (I> .

Terms of this type vanish, since one must satisfy the relations [8]

<,N', l Q@ IN, > = NN 6N',(N-1)

and

+
<,N',...’ @ N> = NNH1 O (N 1)

between initial and final photon states. Hence, the terms in equation (45)

(1)

n

vanish and the first order correction E does not contribute; that is,

(1) _ g

En o - 0 . (50)

Second-Order Corrections

The second-order correction to the interaction energy is given by

(2) _ (2) Hyo e
By = Hue t Z (00; (0) . (1)
a'#o (E -E )
o o
Since E;Z) contains both H(i) and H(z) , one first evaluates H(z) in
terms of K(—E) From equation (14), one notes that H(z) consists of Hl(z),
2 2 2 - —
HI(I) and H; ). Since HI( ) is given in terms of A (p), one uses equation
(5) to get

17
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Y

(2) ( { >(27rlic2 ) ( 1 2
H = 2 Z z 2
I 2puc Vol. i h \ KK

(X - k') i(K+K')pp

- o+ = i — -
X &}\(K) (f}\,(fc)e —@A(K) &A'(K) e

+ -~ + — —i(?+7<7)-70:
-@, (k) @, (x) e

-i?—?‘ <o, A
( )Py 2

— N —-»l
A(K) € (k") . (52)

+@) (%) @, (<) e

and the definition for H(z) given in

H

2
Using the above definition for HI( )

eqguation (14), the first term in equation (51) becomes

2) _ 1 - - = — '
H., =\d Il 2t Ap(py) » Aplpy) | 1
+{ 11 L Xy A |1
I | ALCU | AL

_ +<I, II' H(;z) I, II> . (53)

Evaluation of the above terms is simplified by noting that the first two terms
give the same result so that only two terms need to be evaluated. Rewriting
the first term, one obtains

N e
Qﬁo) (1) ‘Pgl(:l)) (r) ‘ <‘ch‘2> Aea) - Alew ,‘bf(lm D) (r)>
(54)

Since the operator A - A consists of products of the form @@ , Cf+ @+,

+
@@ , @Q, the above expression may be solved by applying the relations
listed in equations (29) through (36). These relations indicate that only the

.. + . . .
term containing (Q® gives results which are nonzero; that is,

18



&?\.(K)&A'(K') iN}\(K)> = { (N+1)}\(K)} (570‘" 6KK' . (55)

<NA (k)

Using this expression in the matrix element, expression (54) yields

1 - -
(0) 2whc? 1 2 — ik -k")ep A ~ A -~ (0)

Separating the sums over k,A and x',A', and summing over A,A' and k',

gives
(0) 2TH 2 (0)
<zpn (1) l (2”02‘,01.); (CK) (N+1) () | ¥y (I>> : (56)

The above term is significant because it shows explicitly how the R

. T .
dependence contained within the exponential el(K k') - Py vanishes when

calculations are carried out to the second order, making the quantity in
expression (56) independent of the interatomic separation. Terms having
this property do not contribute to the interaction energy between atoms I and
II and only give rise to self-interaction energies which are neglected in this
calculation. Hence, the first two terms of equation (53) do not contribute.
The last term of equation (53) is given by

>

(0) (0) (0) (0) =
<pn M ¢, (m AECI <H> = <z

This term corresponds to the electrostatic interaction between the two atoms
and, as such, contributes to the interaction energy. Since all other terms
vanish, equation (53) is given by

)
q

1(2)
q
(57)

g3 _ <1/ (2 a> . (58)
o q
. (1) . (1) (1)

Expressing H in terms of HI and HII , the numerator of the second

term in equation (53) becomes

i9



i ull = [ [ J D@ [+ G o D g |2
€D - QD ED] -

where «' denotes all the quantum numbers for the intermediate states.
Expanding the first term in equation (59) yields

1) ) ' _ (0) (0) 0 0
<a| Hy a><1 o> —{<bn M ¥y © 2w zpr’,)(r> (60)
0 0
x <pr‘],’ M ¥gor (1) 3w v (r>} G

I(i) one notes that it consists of two terms

(1)
HI

(1)
Hy

(1)
HII

(1)
Hy

(1) (1)
HI HI

(1)
HI

3

Referring to the expression for H
involving &7\(?) and @;(Tc.) , which, when operating on the photon eigenstates,

as previously stated, require that the initial and intermediate photon states

differ by one photon. Since <{I(1> <E{I(1) is independent of the coordi-

nates of atom II, a photon must be exchanged between the field and atom I to
obtain nonzero results. This is illustrated below, using the following inter-

action diagrams [10].

1
Hf)

(1)
|'||

(a) ® |,

According to diagram (a), atoms I and II are initially in the same
state (single lines), and the photon state corresponds to the vacuum state.

1 . . .
The interaction operator H( ) "earries” the system into an intermediate

state | o '>, where atom I is found in a different virtual (double line) state,
atom II remains in its initial state, and the photon state contains one virtual

photon [10]. The next interaction operator Hl(i) Ybrings'' the system back

to its original state. Diagram (b) illustrates the case in which the initial
photon state is not the vacuum, If the initial system is such that both atoms
are in the same state and the photon state corresponds to the vacuum, then
only diagram (a) applies. Similar analysis on the fourth term of equation (59)

yields identical results.
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The second and third terms of equation (59) give similar results, as
may be seen by considering the second term in its expanded form; that is,

DD ] - o
X<¢r(1?') () ¥ (0)

To have nonvanishing results in equation (61), the photon states must
differ by one photon. Hence, there must be a photon exchanged between atoms
I and I because both Hl(i) and HI(II) appear in the above matrix product.
The only possible nonzero interactions are illustrated below.

ey

) 1y 5(®
1 b @ ¥ (r> 8y (D

(1)
HII

(1)
HI

(61)

(1)

©) i1y 5(®
Hy ' 1o, @ ¢(N)(r> 8@

)

( (1) )
H ) Hy " 1

KA KA KA

m 1 (1) m
Hi wM M ")

I @ n | ®) n I () I C) T

Diagrams (a) and (b) correspond to él(i)> <-Il(li)>; (c) and (d)
correspond to @1(11> <{1(1)> Analysis of these diagrams shows that the

conditions of equation (61) cannot be met since the atomic states change in the
transition from initial to intermediate state during photon exchange. Hence,
the second and third terms of equation (59) do not contribute either. Therefore,

(2)

(03

;2) is identically zero. Since the second term of E

vanishes, only the term given by equation (58) contributes to the second-order

correction; that is,
a> . | (62)

g _ <a| a2
a q

Later, it will be shown that this term vanishes when the unperturbed states
are s-states.

the second term of E
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Third-Order Corrections

The third-order correction Eé3) is given by equation (42). Since
Hr(lril) has been shown to vanish, EC(Y?’) is given hy
<H(1> 0@, g@ g )
E(3) _ Z aa' a'e aa' o'a
@ a'#ao E(O) - E(O)
o’ a!l
Z Z Ho(:)z)' Ho(zi'gu" Hci%')oz (63)
+ 63
a'fa o' (E(O) - E(?)) (E(O) - E((’),))
(o' a o o

Considering the factors in the first term, one notes that only one of them needs
to be examined in detail, since the other factor is similar in form. Using

1 2 .
equations (13) and (14) and expanding H(ioz)' Ho(z 'L , one obtains
ENDETS {0 o |1 |2 0 oo > (64)

(), ,(0) (2)],(0) 4, ,(0) ]
xQn. @ vl @ | 1 \‘Pn M 'P(N)‘”>]“n,nv-‘“’

Further expansion of the first term of equation (64) gives
S e G DEC R DAL D
GER DDA
D [ i[>

The condition 6n n”(]:[) requires that atom II remain in its initial state

() )
HI HH

during the interaction between atom I and the electromagnetic field. In
(1)
I

photons differs by unity, and H

couples only photon states whose number of
(2)
I

photons differs by zero or two. Therefore, the only way to satisfy both
(0)
(N)
(r) / must be the vacuum state; consequently,

addition, the operator H

couples photon states whose number of

requirements is to allow the initial state | (r) to contain one photon.

(0)
Y(N)

the above term cannot contribute to the interaction energy.

This is not allowed since

22



Referring to equation (64), one notes that the preceding discussion
also applies to the fifth term by simply interchanging atoms. Similar argu-
ments are used to show that the second and fourth terms of equation (64) do
not contribute either. Finally, the third and sixth terms of equation (64),
(1)
1,1
couple states whose number of

which contain matrix products of the operators H(z) and H do not

(1)
HI, II
can only couple identical photon states.

. (2) (1)
Applying the same arguments to Haa' Ha'

contribute because, as noted before,

photons differ by unity, and H(z)

one finds that the first term in

H

(3)
o
corresponding to equation (64) are illustrated in Figure 3. These diagrams
are introduced here only to illustrate the method used to analyze more complex
situations later on.

equation (63) does not contribute to E Possible nonzero configurations

2
H()

2
H()

m

Hy

(2)
I

(2)

Hy

M

Hy

1 1
H( ) H( ) H(])

(2)
q

Figure 3. Possible nonzero interaction diagrams of equation (64).

The last term of .equation (63) consists of matrix products involving

H(l) only. Using equation (13) to expand this term, one obtains
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o)), 52, |
e 43 ata ala

=<a HI(“ a! HI(“ a><¥" HI(“ a>
< V) >< V) >< Y >

G G - G G G
G DG G D
D G - D D

1(1) and HII are
(1)

and products coupling HI

In the above equation, three types of products involving H
(1) (1)
I or HII

in various ways. If one requires that initial and final states be

found, products involving only H
(1)
and HII
identical, one notes that all the above terms violate this requirement in one
way or another. This can best be seen by analyzing the diagrams in Figure 4,
which depict typical nonzero configurations of the terms in equation (65).

Lol | Ry

(M Q) (M

H, ]i:; Hy) H
(1) (1) (1
i H \\ Hy

Figure 4. Some interaction diagrams of equation (65).
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i

J

i Since the last term is zero and the previous terms of equation (63)
do not contribute either, one finds that the third-order correction to the

interaction energy vanishes; that is
(66)

53
n

=0
Fourth-Order Corrections

The fourth-order correction to the interaction energy is given by
(1 ) as well as the products of the form

equation (43). Using the fact that H
given by equation (59) vanish, the expression in equation (43) becomes

(i) - e [0 [ D <[

(2)

(2) ’ a>

al

aa'
D]
< (2)>< (2>> < (2>> <H<2>> < (2>< <2)> (67)
RCPICPRCPICIREPICH
Expanding ihe first term of the above equation yields
oo p
a'ta N ‘- E
2 ), -l 8 il )
(5 o) (2 o2
- g T é‘i)- (é‘-iyn-:é‘-f-a) v
(0) (0)

(50 (b)‘) ©_ Lo
a' ¥, a oz" a a"'

* L
a'fa a'fa a''*a (
-4

The three types of terms corresponding to various interactions in the

above equation are analyzed as follows
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a. Interactions between field and either of the atoms: The first and
fifth terms in equation (68) correspond to this type interaction. These terms
do not contribute fo the interaction energy as may be seen by analysis of
diagrams (a) and (d) of Figure 5.

b. Interactions between field and both atoms: The second and fourth
terms of equation (68) correspond to virtual photon exchange between atoms I
and II and, as such, contribute to the interaction energy. [See diagrams (b)

(2)
q

and (¢) of Figure 5.] The terms in equation (68) involving both H and

(2)
I_II, I
takes place through the operator H
(2)
LI
(2)
q

are also in this category; except that the interaction between atoms

c(12) and the field interacts with either

3

of the atoms via H Hence, these terms contribute only when matrix

elements over H are nonzero. This group of terms is illustrated in

Figure 6. Note that in this case HI( I)I gives rise to instantaneous emission
and absorption or absorption and emission of two virtual photons. This requires
that the initial and intermediate atomic states be the same. Therefore these

(2)
q

terms contribute only when the matrix elements of H over initial states

are nonzero,

(2) (2) 2) (2)
H H
' ' " Hy)

H(Iz) 4@ @ (2)
(a) (b) L (c) (d) i

Figure 5. Interaction diagrams corresponding to first, second,
fourth, and fifth terms of equation (68).

c. Interactions between atoms I and II only: The only term of this type

2
is given by the last term in equation (68). Since Hé ) does not affect the

photon states, the initial, intermediate, and final photon states must be the
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(2) 2 (2 (25 (2) @
H, O QH" 1 I TS R— e
@] __ (2 ,(2) )  (2)

Hq —-———— Hq Hq ________ *Hq Hl Q H(ﬁ)

Interaction diagrams corresponding to the third, sixth,

Figure 6.
seventh, and eighth terms of equation (68).

same. The diagram corresponding to this term is given in Figure 7. Note

that, when electromagnetic interactions are neglected, and the interaction
energy is computed to fourth order in the electron charge e, only this term
and that given by equation (58) are obtained. This is the reason for singling

out this term in Figure 7.

The second term of equation (67)

H(2) ______ H(Z) is given by products of the form
a e (2) (1) (1) (1) (2) (1)
Hoza' Hoz'cv” Ha"a ? Haa' Ha'a” a"a’
(2) (2) and H (1) H (1) H (2) Using pre-
H, p-—-—-- =~ 4H aa' Ta'a" a"a
! ! (1) (2)
| ] vious definitions for H and H s

the expansion of the above products is
quite lengthy. These expansions are
needed to select the nonzero terms
which contribute to the interaction

Figure 7. Interaction diagram
corresponding to the atom-atom
coulomb interaction term given

by the last element of energy. If the indicated expansions
ti 68).
equation (68) are performed on only H(z)'H(%) " (%') ’
aa' Tata" T aae

and the results are expressed in terms of interaction diagrams, the task is
simplified considerably. For the other two terms, only the resulting expan-
sions and their corresponding interaction diagrams will be shown. To obtain
the interaction diagrams, one uses previous results, illustrated in Figures 3,

4, 5, 6, and 7.

27



Expanding one of the terms yields the following:
{ @) y1) (1) }
aa a'a" oo
D& D¢
+ <al HI(Z) ,a'>€' Hl(i) 'a><1”
S CAC IS
(1
S

D&
< >< ><I><12)> >
D> G
DG DG GGG
+<Hc(12)><_11(11)><{1(1)>+ <H(;2>>él(li>>é§>> e

In associating the above terms with an interaction diagram, one finds
that some terms can have more than one possible configuration which gives
nonzero results. This occurs especially for those nonzero terms which violate
the requirement that final and initial states be the same. In other cases, one
of the possible combinations corresponds to the term that contributes to the
interaction energy. These situations are illustrated in Figure 8, where (a),
(b), and (c) correspond to the first category, and (d), (e), and (f) to the
latter cases.

(2)
HI

Vo>
|2
GO
PG

m

S

Note that diagrams (a), (b), and (c) of Figure 8 do not contribute
to the interaction energy and only (d) of the remaining group contributes.
The photon states corresponding to diagrams (a), (b), and (c) in Figure 8
are:
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KA
(2) @L (2)
" 0 H " O
xA
M Ml 40
I I |
'y KA
1 A K
H( I) K H(:) ! H(:|)
@y o ® L@
2 2 (2)
H(“) 4 |) HY
. o
KA
1 (n 1
H(n) H " H(u)
KA <A
14))] H(‘) H(l)
(d) I (e) i i

Interaction diagram corresponding to various nonzero
configurations of terms in equation (69).

bdlles 1Dl 55>
(b) <0 KA, K'}> <A, KIA! K'><'A' ' @;,(l") (>
(@) <x, prx KA, x'><)\, KTA! (f;,(?)} K> xxi @:(?) (> .

As one can see, these photon states may be associated with various inter-
mediate states in the diagrams. The ordering of these states may be obtained

by reading the matrix elements from right to left as one follows a diagram
from the bottom up.

Figure 8.

(a) <>

[ + —-
67\(") &A(K)

— -
@, (k) @, (x)

G;\(")

@, () @,, (")

e Eu.
e, @) @, ()

The interaction diagrams corresponding to the terms of equation (69)
are listed in Figure 9; only one configuration for each term is shown, whether
it contributes to the interaction energy or not. The listing of these diagrams
is the same as the ordering of the terms in equation (69). Analysis of
Figure 9 shows that only six diagrams contribute to the interaction energy:
the fourth, fifth, and the last four. The remainder of the diagrams in
Figure 9 correspond to either unacceptable situations or to self-interactions
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Figure 9. Interaction diagrams corresponding to
terms of equation (69).

between either of the atoms and the radiation field. Of the six terms which
contribute to the interaction energy, four involve the electrostatic interaction

2
operator H(; ) in two different ways. This can be seen by referring to the

last four diagrams of Figure 9.
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The next term to be considered, when expanded, gives

{H‘“.H“.’ )
ac a'a (67

- o | m® a><v H®) a>
+é Hl(i) a>é Hl(z) a'> a' Hl(Ii) a>

D D @D D D G
RCICHACORCIAC DR D
RSO
P LT D D G

D ED EEDED ™

The corresponding interaction diagrams are listed in Figure 10 where the
rules outlined previously are applied to this case also.

Analysis of Figure 10 shows that six diagrams contribute to the
interaction energy as before: the fourth, fifth, and the last four. The
remainder are classified as in Figure 9.
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Figure 10. Interaction diagrams corresponding to terms in equation (70).

The last term in this group to be considered is given by

(71)

T4 Zpg g T, o
o] jand o ] o

/\/a\/\/\/\/\/\

+

L

~ 8

o

~%

=3

3%

2%

=
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The corresponding set of interaction diagrams is given in Figure 11. Analysis
of this figure shows that six more diagrams contribute to the interaction energy:

the second, seventh, and the last four diagrams.

<

| i i
Figure 11, Interaction diagrams corresponding to terms in equation (71).

The importance of the preceding diagrams lies in the fact that one now
finds nonzero terms which contain both the radiation field operators and the

coulomb-type operator, H (2) coupled together within individual factors.

The last four diagrams in Figures 9, 10, and 11, respectively, show the form
of the interactions in a systematic and informative way. Later, it will be seen

that these terms play a very important role in the evaluation of the interaction
Instead of collecting the contributing terms

b

energy to various approximations.
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just obtained, one evaluates the last term of equation (67) and then collects
all the nonzero terms which contribute to the interaction energy.

Using the definitions for H(i) , the last term in equation 67 expands
into ’
(1) (1) (1) (1)
aal ala” aNaHl a“"a
(1) 1 ! (1) " 11" (1) 7"t 11 (1)
P [ e | o
e [ Dm0 [ DG [ [

AN

o1
o[>
>

>

> D G D G G G
PG D G P DD @D @)
P D) G G+ G DG D <D
+<{ff>><ﬂl PACURC IO, éf“><{a“>

< .
+<‘“>< &> <<H1> W < ‘“> < (“>
s Gl ol D +<Hf:>> Gl Gl >

The terms in equation (72) contain various types of factors, correspond-
ing to interactions between each individual atom and the electromagnetic field
or between the electromagnetic field with both atoms. In order to illustrate
those terms we again pick one representative interaction diagram for each of
the terms which does not contribute to the interaction energy, but list the
various combinations which do contribute. This is necessary since we have to
consider all possible configurations as indicated by the sums over «,A; k', A’

(1)

of the operator HI

~
-
—
[N
~

/m\@}/m\

2 e e
"
N

[

\7\7\3/\7

N AV VAV

AN
N
2\ N
<
ANAN
&

= -

(72)

in the various intermediate states. Until now, only one

interaction diagram per term has been sufficient to take care of the nonzero
terms. This is no longer sufficient when listing the pogsible configurations
for this term. This point is illustrated by considering a specific term of
equation (72) and listing the possible configurations of this term in Figure 12,
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Hias I

I_l(l)

H(1)

possible nonzero configurations for the 13th term of equation (72), which

KA

Figure 12,
corresponding to the 13th term of equation (72).
parameters k,A; k',A' are included to show the variations in

m
|

(M
1

H(1)

H(1)

KA

)
Hj)

m

(n
Hy

)]
Hy

KA

(n
"

1y

Interaction diagrams of some of the possible configurations

intermediate photon states.)

(The photon

Analysis of Figure 12 shows that the first two diagrams are two

contributes to the interaction energy.

The interaction diagrams corresponding to equation (72) are listed in
Figure 13; one includes the various configurations for the terms which con-
tribute to the interaction energy, and only a representative diagram is

included for those terms which do not. When a given term contains both zero
and nonzero configurations, the configurations which contribute are used. In
Figure 13, the various interaction diagrams are numbered; those which
correspond to the same term of equation (72) are denoted by primes [e.g.,
(4) and (4)' correspond to the fourth term of equation (72)]. Analysis of
Figure 13 shows 12 diagrams corresponding to 6 different terms, in equation
(72), which contribute to the interaction energy. This is by far the largest
(4)
o
that out of a large number of possible combinations indicated by the sums over
a', a", a'', a number of terms do not contribute, solely because of the
restrictions on the various photon states. Collecting all the terms which

(4)

o

number of nonzero terms resulting from a single term in E One can see

contribute to the interaction energy correction E one finally obtains

2
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Interaction diagrams corresponding to equation (72).
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Combining Ec(;l) with all the other nonzero corrections, one obtains

the interaction energy Ea to the fourth order; that is,

E = E(O) + e2 E(z) + e4 Ec(z4) (74)

(6 (¢ o

(4)

and E
o

(2)

where Ea are given by equations (62) and (73), respectively.

It is easy to see why one must consider fourth-order corrections to the
interaction energy when considering both electrostatic 'and electromagnetic
(2)

o
4
tribution to the interaction energy comes from E(i ). In this case,

vanishes, the only con-
g4
a

interactions between atoms. In cases where E
is

simplified somewhat because several terms in equation (73) vanish.

INTERACTION ENERGY BETWEEN HYDROGENIC ATOMS
IN THEIR GROUND STATE

Interaction Energy of the System

The unperturbed system in this case consists of atoms I and II initially
in their ground state configuration (1s - 1s); the electromagnetic field is in

its vacuum state ( ' s oo 0, ., > . From the previous discussion, the

energy eigenvalue to the fourth order is given by

0 2
E = E( )+e E(2) +e4E(4) . (75)
a a @ o
Since one is interested in the corrections to EC(YO) rather than Ea , one
rewrites equation (75) as
2 2
AE = (E -E(O)) = e E( )+e(4) E(4) , (76)
@ o o o o
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e
where AEa is defined as the correction to the ground state energy due to the
Henceforth, this will be the only quantity of interest. To
2 .
(2) given by

interactions.
evaluate the terms in equation (76), one considers first Ea
2 2
E(>=QH(>Q> . 77)
o q
In terms of equation (3), the above becomes
o © L, L; L
<2)_< l< l (1) 21t 5 (dm) (Ly + Ly)!
e = {1¢,0,0 o1, 0,00 0, .o | Y ) 1= =2
! Lt L1 RUtlett [(2Ll +1)(2Ly + 1)] 7
M=+L_ Yi{* 0 YLM* (1)
=1 2 1(1,0,0) u(1,0,o> ,0, >
(78)

s
L [ Mt - (L 0t (@, - 1t

(2)

Since the operator Hq

factors into quantities corresponding to atoms I and
II and does not contain field operators, the above expression may be written

as
5@ _9 YT 0™ (@) (L + 1)t
- L -
t T, T, M girtlet I:(ZL1 +1) (2L, + 1)] /2[ (Ly+ M) (L - M)! (Ly + M)! (L, - M):] %
ry? YLTM* (0262) H(1,0,0>
2

(0191)

r1L1 YL1

% <(1,o,0) 1(1,0,0> <.I(1,0,0)

Using the definition for the atomic eigenfunctions given in equation (18), the
matrix elements in equation (79) factor into products of the form

<1(1,o,0) it y M |1(1,o,0)>
Ly
_ Ly 0
= { Ri,0(D) ry | Ryo(D) Y, %(I) Y

M*
L, (D

‘ Y0°(1)> .
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Using the relations between spherical harmonics [12],

m3 mz* m1
<Y£3 ( Y1, Y‘1>

Y.
¢ 2

am (285+ 1)
(80)

one obtains

y™ YN o= (L 1/26 &
4 2, " M, 0 "Ly, 0 ’

by setting m; = mg and m, = M. Substituting this, equation (79) reduces to

M*
YL1

T R, () 6 6
2 1,0 L1,0 LZ,O (81)

A

L, Ly
S, o2 (47r)(L1+L2)5<R1’0(I) Ty IR1’0(1><-'{1,0(H)
g . Z
1

LiL, M glrrlzstt [(21,1 * 1) (2L, + 1) (L - M)H(L, + M)I(Ly - MII(L, +M)!]

Equation (81) shows that the only term in the series corresponds to
the case where L; =1, =0, and M = 0. This term is the monopole contri-
bution of the electrostatic potential between the two atoms. When the charge
distributions are neutral as is the case here, this term does not contribute.

Hence, one sees that Eiz) is identically zero for the case in which the atomic

initial states are picked to be the (1is) ground states; that is

Ei(z) =0 . (82)

With this result the second term in equation (76) is considerably simplified,
since the various matrix elements involving the electrostatic operator

2
H( ) will vanish when the atomic states considered correspond to the initial

state, Identifying these factors in equation (73) and setting the terms containing

40



them equal to zero, the expression for Efl) may be readily obtained. Since

E(z) is zero, the resulting expression for E(4) is just AE/e4. Applying
(4 )

the above comments and rearranging terms in the expression for E
obtains

4 i
AE/e = — N
g ( © _5© >

(€D <‘2’><‘2> @D

{<<2>><<“><m> @

one

1

"o qu[ (5050 (20 - Y (5 o }

@D EDED ADEDEDED e
DD EDED ADADED D
P EDEDE DD - GD WD DD
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The terms in equation (83) are then the nonzero quantities which need
to be evaluated to get the interaction energy of the system to the fourth order
in the electron charge e. The interaction diagrams corresponding to these
terms are summarized in Figure 14, in which all the possible nonzero com-
binations are included. Referring to Figure 14 one can see the reason for
rearranging the terms in equation (73) before writing down equation (83).
This rearrangement yields the following groupings:

a. The first diagram corresponds to the coulomb type interaction
<{<2> H(2>> ,
q q
b. The next two correspond to interactions of the type <H(2)><—I(2)>,

c. The next six correspond to interactions of the type

OOASOACS

d. The next six correspond to interactions of the type

GHEEET.

e. The last 12 diagrams correspond to interactions of the type

ESES GG

The above diagrams in Figure i4 are now used in the calculation of the matrix
elements of equation (83).

Evaluation of Terms in Equation (83)

The terms in equation (83) are evaluated by considering the terms in
the order in which they appear. The first term is given by

(o) - g DRI G 1)

e B a'Fo (E(O) - E(0)>
o

(84)

ol

Because this term corresponds to the electrostatic interaction between the two
atoms, it has been considered previously by many authors [6,13]. The
procedure used in evaluating this type of term is simply outlined, and the
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result is given in terms of quantities used in this calculation. In evaluating
quantities of the form given by equation (84), various techniques [12,14] may
be used to obtain approximate results since the exact evaluation is quite
difficult. The usual approximation technique is known as the Unsold
Approximation [11], which consists of replacing the denominator of the
quantity in equation (84) by a constant average energy €. Once this is done
the expression-in equation (84) is evaluated by using the matrix summation
rule over complete states. In this approximation, equation (84) reduces to

or () -1 G [ DG D)

An alternate approximation used in this calculation consists of restricting the
intermediate atomic states to the 2-p states. Using this approximation
(which, incidentally, is the same used by Casimir and Polder, and Power and

Zienau), the expression in equation (84) becomes [15]
>

e D

The factoring of the denominator from the sum over m is due to the fact that
now the sum over m is just over the triply degenerate 2p states. Summing,
the above expression reduces to
2
1 (2)
q

(2)) 1

AE (H SN S
q 2 ( E 0~ E 1
Since the electrostatic interaction operator does not connect s-states,

2 2
<<z| H(; ) o>) vanishes when loz> represents the 1s ground state.

In this case both approximations yield the same result, if one lets

e
q

£ (2) 1
AE( >
(E<o> (0)

€=2 (EO - E1 . In subsequent terms the latter approximation will be much
(2)

easier to handle; even though, in the terms involving Hq , both approxima-

tions will again yield the same results with only a different constant.
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=5

Having introduced the approximation techniques to be used, one
proceeds with the calculation of terms in equation (83). By substituting
from equation (3) and factoring the atomic eigenstates as before, the

(2
q
preceding equation becomes

I

_ =0T @i+
2({E_ -

4 (0 Ei) Lfmfyn RUTEFTHy+isd

1 @ < .l
<R1,0(1) 5y B oW NBy, o™ |7 Ri,o(n>

x
[(2‘ 1 EL+ )2y + 1)@+ Dy - )iy + ) UT - )T+ w1 - m)I(4 + m) (L - m)!1(L+ m):]l/z
0 * #* 0 0 R _p%
x <{°<I) L WY m |Y0u> éo(n) l Y Yy IYg(I[>
Using the coupling rule for Spherical Harmonics [10] and the result
m
m m -1
v Yyt = (___)_ & & ,
L i £ 1 47 £ Y M, =l

the above simplifies to

AE (H(z)> _ 1672

Y

YI Y

('1)21_1 I(L+£)!}Z<R1,0(I) r1ij |R1 0(I> <R1 o(ml sz |R1 0(H>
U ' et : (85)

(2)
AE(H >= - :
; ; é 2(E0-E1)R2L+21+2 [(21+ 1) 2L+ 1) (€ = m)T(f + m)'(L - m)! (L + m)!]

The radial matrix elements may be evaluated using the eigenfunctions defined

by equation (21). The result is [16]

24
(28 +2)! ay
éi,O(I) R1,0(9 - 2 (221 ) : (86)

The expression in equation (85) will be used to obtain the various multipole
contributions due fo the electrostatic interaction energy. For example, if one

wishes to obtain the dipole-dipole approximation, one lets L =£ =1 and sums
This will be done later when one has the complete

rZI
1

over m=+1, 0, -1.
expression for AE,
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The next term in equation (83) to be calculated may be redefined as®

1? o> G| 5P | oy
é‘><tX 9 .m <a| I (EITO)_SZMI)HIQ
o al

(87)

Expanding the above term, one gets

1
< > < > '#oz a"#oz ({2E0 - [En(l) + Em(H) + NMck + N')fcx']})
x <(0)11(0) <)l HI(Z) |N}\(7<’), e NG, > I I(n) II(m> (88)
o ' (2)
x { I(n) I(m) NA(K), N}\,(K ), HI.I 1] I(0) II(0)

which can be simplified since H(z) depends only on the coordinates of atom I,

(2) !
I depends only on atom II.

To find the form of the intermediate photon states, one recalls that

and H

HI( 21)1 consist of four different products of field operators, as shown in
equation (52). Using the relations given by equations (33) to (36), it can be
seen that only one of these products can have a nonzero solution; that is

<O‘ @A(K) Cf}\,(fc’) NA(K), N’ (K’), >

= AN () NN () <)l M-1), (), ... @016, > . (89)

which is satisfied for the case in which N = N' = 1. Thus, the intermediate

photon state may be given by I 1 (I{) . 17\, (?’)> . An equally suitable

3. This type of definition will be used throughout the remainder of this
calculation. The form used indicates the type of operators associated
with the various interactions.
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solution is given by li;\, (;—c7) y ees 1}\ (E’)> , which is obtained by inter-
changing the respective photon parameters. Thus, the most general solution

~1
is (2) /2 { lx?x;x'?\> + I K'A';x>>} . This intermediate photon state picks
(2)
IIr
the form for the intermediate photon states, one evaluates the matrix products
in equation (88) as follows:

out one term corresponding to k,A and k',A' from H Having established

(2)
LI
the respective matrix products, one performs the indicated multiplications by
using the approximations indicated before. Having done this, and having

operated with the field operators, one obtains the following for equation (88):

é ’ 916 ) > oo Kz)(,(z,'\.{ 4;;5“(2\?:1 s :l (ﬁ)[hc (x1+ x')}(—"z/—ﬂ(ﬂz?)
xli/e\}\(_x.).’e\w(:)] [E - (K')]<(o) I(><l(0) u((> (90)

After rearrangement of the quantities and substitution of 7)’1 and —p; in terms
of the relations given in equation (47) and (48), one obtains

21k 1 A —~ A — A=A
NS MR e e
xe-i(x+x')'R<(0) 1((> <1(0) H(O>

Before one can simplify the above result, one needs to replace the sums over
x and K by using the well-known substitution [17]

Taking terms for H that give nonzero results and substituting into

i (eret) - Py -1(K+K ) P2

e

(91)

AT .(_._,') —
1{x+x') T =1{K+K") T
e ( )Ty e 2

Vol. — Vol.
;»f(z—c;r)gdx=(2—§)gfxzdxfdﬂx ,

where (27)~%(Vol.) is the density of individual states in ?—space. Using
the polarization relations given in Appendix A, equation (91) becomes

i) R A,
GD & D (ates) 11 4 sy [T wi]
x <(0) I(0> <1(0)| o HKFK!) Ty ]1(0)>

e
GHlKHK') Ty
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The preceding equation could have been obtained much easier by considering
the interaction diagram in Figure 14 which corresponds to this term. If this
had been done, steps required to show the form of the intermediate photon
states could have been omitted since the interaction diagram shows that the
intermediate state consists of two photons and that both atoms are in their
respective initial states. Nevertheless, the answer would have been off by a
factor of 2 since we would have neglected the possibility of interchanging «!
and k.* This remark applies also to the third diagram of Figure 14 and to

the next six diagrams that follow, since they too contain the Hl(zzl operator
which gives rise to instantaneous emission and absorption or absorption and
emission of photons. Hence, each one of these diagrams corresponds to two
possible modes which are indistinguishable and must be taken into account by
taking linear combinations for the photon states as was done for the term just
considered. A variation of this situation was discussed in conjunction with the
remainder of the diagrams in Figure 14, in which there are two possible non-
zero diagrams for each of the terms in equation (73) belonging to two possible
unique ways to go from the initial state to the final state. Let us proceed to
obtain the rest of the terms in equation (83) using a more direct approach.

The next term to be evaluated is very similar to the term just con-
sidered. This can be seen by referring to the third diagram of Figure 14
which corresponds to this term. The result is given by

_ b’s o 1 +i(K+6') R 2 A A,
<A.I>H<'>I - —<25;I#203) J dx f dx [KK'(K+K')Je [1+cos (K’K)] (93)
X é(O) H(» <[(0) I(0>

which is the same as the previous term, except that the exponentials have been
replaced by their complex conjugates. Before computing the remainder of the
terms in equation (83), the terms just evaluated are combined into a group.

(The reason for this will be made clear later.) Combining equations (92) and

(93), one defines
0 (€D G Pa EDuk D)

4. This point was discussed by correspondence with Prof. E. A, Power,
London College.

e [
e+1(x+rc')-r2 e—l(K+K')-r1
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- A - — |1+cos? (&, 5" || -G R AT “1 ()
X(1) —(’gsm )f dic [ di [ kK" (i + ') { < 1>< - rz>
+e+i(K+K')-R€Fi(K+K.')-r2><—i(K+K')'r1>} .

The next term to be considered corresponds to the fourth diagram in
Figure 14, This term is evaluated using the previous results and making use
of the information contained in the interaction diagrams.

(94)

This term is defined as follows:
<( )>< (1) (1)
< > < >H< > a a" ( <0>_E<0>)(E(0)_E<0)

By referring to the interaction diagrams and substituting for the operators

(2) (1)
I—II II

(95)

and H only those terms which give nonzero results, one obtains

2
1 21 1
é > <A > é 1> M x')\' = {,Hc (x +x") [(El - EO) +hc7(]} (Vol.) (){,ﬁc“ )

1 .  ilFxhy. . .

x <(0) H(O)l Q (;f(—) < [‘@x"" a,, & o &) Py ol ,(x-)}
« <roy woy| onenr | ()| -6, i) NP g ') P, (T3)
g P A\ A FIARE]

DA DATH T S

Operating on the photon states, substituting for 7)’1 and 7;2 and rearranging
terms, the above equation becomes

A A A - A A A A —i(TcTI-T(")-E
€ (x)-€ (K')] [e (x)] [e '(K'El e
/A> (22 [t SRR
N K}LK'}\.' (Vol. )2 3 ¢* k' (K + k') [ (E, - EO)+ )ch]

< > (97)
x {JI(0) 1I(0) 1(0) II(0)

< I(0) I[(m>

X <(0) II(m) I(0) II(O>

KA, m> luo) u<o>
x> 10) Il(m>

1(0) H(0)> (96)

i(k+x1)- T
RICTD R

_1 '.? —
R ENC

e_”"r2 P, (rz)

J
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The momentum operators may be replaced by position operators by making use
of the well-known approximation [18]
m> : (98)

Making this substitution, replacing the polarization products using results in
Appendix A, summing over the atomic states, and replacing the sums over
k and k', equation (97) becomes

I—Em)r

(E, - E)? o e_i(,:lz’v)-ﬁ
<Q> <A> <> Py fdx fdx' ' + 1Y) [(E1_Eo)+hck]

x 7, [6]- () (x) - (", (w (0, (x') (x - K-)}

ij
<o 0 o | SFIE G 6 ey g0

The next term to be evaluated corresponds to the fifth diagram in

Figure 14 and is defined by <XA> I <‘X I-> I <§ I> I One notes

that this term is identical in form to that given in equation (99) with atoms I
and II interchanged. If the coordinates centered on atom I were replaced by
those centered on atom II in equation (99), the result would not be correct
unless the sign of the exponential factor containing the internuclear separation
R is also changed. The necessity for this change is that interchanging atoms
also requires the change of the direction of the vector R because the assumed
convention calls for R to be directed from atom I to atom IL Hence, this

term is given by

i(kik') - Tq
ol )ery

' (E,-E)? o SR
Q'9H<'>I<'91 T J ax J o kit (i + k') [(Ei'Eo) +Aic,<]

X Z [5 - (K) (K) - (K') (K') + (K) (K') ( - xv)}
ij

x <(o> | IR EANEAR ‘ 1<(> <1<0)

i(ktx') - T,
e( ),

H‘°> : (100)
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B

The next term to be evaluated corresponds to the sixth diagram in

Figure 14 and is defined by Q P>H<A-A>I<3u 1>II . Using the

interaction diagram corresponding to this term, and performing similar
operations as for previous terms, one obtains

(27K)? 1
AP A.a» {A.pP L
< > < > < > ﬂ K A, o [Vol. K u° ¢ ] {mc'[(Ei -Ey +ncK][(E1 -Ey +hcx'] }
x <(0) (o) m> 1(0) H(m>
x <(0) H(m)l <xw € u7>l1(0) ]Zl(m>

6, @@, o P e @2 @
x <(0) (m) > |1(0) n(o>

ol @ g et P e (- B @)

-1z € () —ﬁ (!'z)

4 -
—61(") e N

(101)

The form of this term is very instructive in that one sees quite clearly that a

term with x,A and k',A' interchanged is also a possible combination. Thus,
even though the intermediate photon states are not made up of linear combina-
tions of k,A; k', A!, one still has two possible modes due to the instantaneous

(2)

emission and absorption process associated with the HI operator. Per-

forming similar operations as before, equation (101) becomes

<I> é-’> é I> [(E —E) l f %’ f dT?{ [(EI-EO)+he;i(]r_§;:ﬁ:lgo)+hm(']}

x Z {6]— (), (x) - (K') (x') + ), (x') <K- ] (102)

ij
x<(o)l el 1<°> <1<0> RN CIR ) IH<°>
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The next term is obtained directly from this result and is given by

(E ~E)? e = JSil)- R
Q 1> <\> <§ 9 e [(B, - Eg) +Hcw] [(E; - Eg) +Hex']

X Z {5 - (K) (h) - (K') (fc') + (x) (M') (x - ;c\')}

ij
x<(0) 1(o><1(0) n(o> . (103)

The next term corresponds to the eighth term in Figure 14 and is

defined by <A. P> I <§ P>I <AA> I Carrying out similar operations

and simplifications as above, this term reduces to

i(R=K')- Ty
RICEO I

)T @ @) J.

(E, - E)? o d;-,‘ G’
<&> <> <> |t27‘4#°h}f%f_KTl(K+x')[(E1—E0)+hcx']

% Z {5 - (K) (K) - (K') (K') + (K) (K') (- Q')}

ij
x<(0) 1(o><1(0) n(o> . (104)

The above quantity could also have been obtained from equation (100) by taking
the complex conjugate of that expression and reordering the various matrix
products, provided one notes the interchange of intermediate states «' and
a'. Otherwise, the denominator of the expression in equation (104) would be

in error.

~1(k+k') Ty
e( ) 1y

el(K+K )1y (;—1)1(?1)3'

The next term to be calculated corresponds to the ninth diagram in

Figure 14 and is defined by <A- P>H<A- 1> - é'A>I . Comparison with

equation (104) shows that this term may be evaluated using the previous method
of interchanging the atomic coordinate systems. When this is done, the above

term becomes
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(B, -E)* - 4D e+i(7¢17c")-f€
<A‘> é% <k‘> uc.ﬁ IT f_x'_ (K+K')[(E1-E0)+ch':|

x Y, {% - @), - (@) R+ 60 ) e - 27)}

1(k+e1). T, — ==
x <(0) 1((;> <1(0) e (I‘z)i(l‘z)j ln(0> (105)

Before proceeding to the next term, one notes that the basic differences
in the last six terms just evaluated occur in the energy denominators, the
exponential factor in R, and the matrix products over atoms I and II. Com-
bining equations (99), (100), (102), (103), (104), and (105), one obtains
an expression for this group of terms which is defined as follows:

o+ (CDEPEDa EDEDED EDaeD D
EDEDEDr EDED G D )

-t -1
e( )1y

where

(E,-E)* -
1 dk A A A A AL A A A
X(2) = [—17—5—2 s } f I =5 Z { RGN NN ONCONCERY! ;

1

~i(k+x')-R e e e
e i(i+k’) 1y ~i(k+i') vy -
e e G 5,
+i(g+c') R e N e
e “i(e+wt)ry =~ —~ +i(k+x') 1y
Y w) [(By - E) + Kok < (ri)i(ri’j>< >
Hce—i(;:?)'ﬁ <+1(E'_Tc")-?1 <-i(}'—?')-?z - = >
* [®, -E) +Hox] [(E, - Ep) +Hox ] N $ (ra) ;(T2)
go M) R <.i(:.m>.a S ><+i(7.7v>.;;>
* [(Ei-—Eo)+hcx][(E1—E0)+ch'] & (T (r1); P
~i(cveY)-R - R
e ikte')er; — = -i(x+g') - T
+ (k + &) [(Ei _ EO) +KCK'] <3 (ri)i(rl)j>€ 2>
+i(K+K') ‘R -1(u+x‘) 1‘1 (x+x ). rz
NTEYD) [(E -E )+hcx] (rz) (rz)

(106)
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In this term, the matrix elements are to be taken over the appropriate eigen-~
states. In subsequent discussions this group of ferms will be referred to-

simply as X(2).

The next term of equation (83) to be considered corresponds to the
tenth diagram of Figure 14. This is the first of a group of six terms corre-
sponding to the third row of diagrams in Figure 14. Due to the great number
of operations involved in obtaining each term, only the first term in this group
will be evaluated in some detail. After this is done, the results of the other
terms within this group will be expressed as a sum of terms defined by X(3).

Let this term be defined by
<H(2)><H(1)><H(1)>
< ><‘ 1> <* I> m = ©) SO\ (O _ oy - 00
o.' a" (Ea )(Ea )

a' a”

(1) ()

Expanding this expression and substituting for the operators HI HH

only the factors which give nonzero results, the above expression becomes

@><"I> <A1>H‘ {[(E —E)+licx][2(E -E)]

x <<0) 1(0) o> I(m) H(m>
1\ [2xnk 1 — iR py A = ==
o | A (20 575 70] [ oy

<<0) n(m); < —11 f,;’f ) & [ NG N Pu(fz)] ' >’1<0) u(0)> } :

Operating on the photon states, collect1n§ terms, substltutlng for the momenta
using equation (98), replacmg p1 and p, in terms of R summing over
atomic states, replacing the sum over « by its corresponding integral, and
substituting for the polarization relations using the results of Appendix A, the
above expression becomes

5. - (Q).(Q).}

-ik-R
(E, -E)* - ¢ L 1%

< ><A é <A‘ 1> 2 ’Th =) d"K [(E -E ;J*’Hc"][E B3] (108)

e
q
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Performing similar operations on the next five terms and using similar
definitions, one can combine these terms as follows:

0+ G D Edar EOSED 1D D, EDEDy
EDalD D D Dy + Dy i)

where

e-IK R (2) uc 1'1 e } 1-2 @ )
[(E -E)+ch [E —Eo] Ty
+ll( R —— ——
( ) -IK'TI — +ix-r2 —_
[(E -E )+hcx][E —EO] < (ry); e (l'z)j>

-ix-R
. ~2e <+1K Ty ( ) H -ik- rz( ) >
[(E1 -E) +th][(E1 -~ E) +hcx]

26 1 R <i?"r’ (2) +r T

- et . 1 — - 2 —

+ e (rp. B e (T5) >
[(Ei—EO) +hcx][(E1—E0)+ch] iq j

. e éi}’.}] ) eif T ) H(2>
1. -
[(EI—EO)][(Ei—EO)+KCK] i 273 g

. e+il—(.-§ e—i-';?l (.;-) e+i;.- Ty (?) H(2)> l
- - Vi
[(Ei Eo):’[(Ei EO) +/ﬁcx] i 2

(109)

The above group of terms shows, in a systematic manner, the way the field
operators and the electrostatic potential are coupled to produce nonzero
contributions to the inferaction energy. These terms will be discussed later

(2)

in more detail, by expressing the operator Hq in terms of ?1 and _1_';, and

ik-r . .
e expanded in a power series.
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The remainder of the terms in equation (83) to be evaluated correspond
(1)
Lo
diagrams of Figure 14. These terms have several common factors and will
be combined into a group as before. Since the number of steps required to
evaluate each of the 12 terms is rather large, only the first term of this group
will be evaluated in some detail. The evaluation of subsequent terms is done
in a similar manner with only minor deviations. Let this term be defined by

to terms involving products of H They are illustrated by the last 12

BB APy AP BAPYy

(1) HI(i) H(1) (1)
o;o; azm ( (<§ E3><( (0)> <(0))>(E§U E(O))

o al o o’ o allt

(110)

Using the interaction diagrams to obtain the form of the intermediate states,
(1)

1T’
nonzero results, equation (110) becomes

and substituting for the operators H only those factors which give

<\'P> 1 <'\'P> 1 Q\P> 1 <AP> i

=Y yv !
= 7 i ; B - B T - " g P - :
L o o 1[3130- (El+E0+zhc:\)][3E0 (2E0+/HCI\+XI(.A')J[.ZE0 (E1+E0+hc;\)] }

o al a/!ll
i — i I
<I(0) 11(0)' < l ( ) ’va ( L )/2[:(1‘}\ ") e~ P Ic\}\(x).PI(rl)J K}> lI(m) u(o>
1 . 35
( ) (ci,)é[d}\,(x')e" e (- P(ll)] KA u>‘1(0) n(0)>
1 13 2 ._.._-’H _1)1/2 Rl -id p-, P 11 1
1(0) 11(0) KA, K'A 1# Vol -(I)\,(l\ ) e e (l\ ). (1 ) RA I (0) {m}

(- 1 —_  _irnp. - - -
X <(0) Hi{m) (—1—1;> Voih ( ) % 1: (T‘;(K) e 1K Py 2}\(1{)-?”(1‘2):’ l 0>

I(m) (o)

](0)H(0)> . (111)
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Collecting terms, operating on the photon states, substituting for 5’1 and -/5;_ R
replacing the momentum operators, substituting for the polarization sums
from Appendix A, replacing the sums over x and ', and summing over the
atomic intermediate states, the above expression reduces to

<A'P>I<A'P>1<A'P>HQ“P>H

P 4
_ (E1 EO)
7 05

—_—

~i{g+g", - R
e

[(E1 -E,) +h’cx] [K + K'] [(El N +hcx]

[ 5
x ), { - @)@ }{ - (k). (’")z}

i,j £,s

_K_

><< ei(x+m)-r1 (}:)i (_{1)1_ II(0)>
><<H(0)‘ e—l(K+xl)-r2 (}’2)2 (—f;)s ‘ H(0> . (112)

The remainder of the terms in this group are obtained in a similar marner
with only minor modifications. Defining this group of terms as X(4), one
can write the results as follows:

O N el A B RS RPN § IS
f ot Gty R(”'M) Ty, (11>>< i (ee) - (), (I‘z)>
l I(E ~-E )+Hc;c][hcx+hcn :“:(E _E )+HCA]

SER R AT~ N\ LA T -
oilx ®') é(x k') Ir(ri)i (r1)j>%ﬁ i{k+k') -1y (12), (rz)s>

[(E1 -E,) +hcx’][hcx +xic,<'][(E1 -E;) +hc;<]

—1(h+x') R <+1(K"’) RNTHY (r)>< (=) -y (12) () >

[(E -E )+hc:<] [(E ~-E )+(E -E )+hc;<*hc;<:”:(E -E )+hc:<:'

_1(K+K) R<*1<K+K )y (r1) (ry) >< ) Ty (1‘2)1 (Ty) >

[(h -E )*ch [(E 0)+(E1—E0)][(E1 —EO) + Kok ]

+
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) B ) T~ T
e 1=k <3 Hic-rt) - vy (ri)i (rl)j> <l(h K1)t ry (1‘2)1 (1‘2)S>

[(E1 - E,) +)rc,<'] [(E1 -E)H(E, - EO) +Hek +Mex']|:(E1 - E,) +l’icx]

“i(k-x') R kKT —~ — Sl
S é Ko (re)y (1‘1)j>€ v (r2) (1‘2)S>

[(E1 -E,) +hcr<:| [(E1 - E)+(E, - EO)] [(E1 -E) +)dc:<']

D) R S Aleg ) Ty = — Ty
i e 1x-xt) <e (st - 1y (1'1)i (1-"1)J.> él(’( K-y (r2), (1'2)s>

[(E1 - EO) +Aﬂc;\—'] [(E1 - EO)+(E1 - EO)][(E1 - EO) +ch]

:
+i(ker) R /~i(kek?)e Ty —~ -~ R I —
g (=) é T @, (rl)j>€”" NN

[(El—EO)'i-KCK] [(El-EO)+(E1—EO)+HCK+}TCK' :H:(Ei—EO) +hcx']

SN REAED T gy @) SR @ @

[(E1 - Eo) +KCK:|[(E1 - EO)+ E, - EO):”:(Ei - Eg) + ch']

kD) R S (k)T — i (et} Ty — —
D REACD T ) @y SETED T 5 (1‘2)S>

[:(E1 - EO) +HCK][(E1 - EO)+(E1 - EO) +Hex +h’c:<']|:(E1 - EO) -'rch]

e+i(K+K')-R<e—i<x+x'>-n T, () >< )Ty (r2), () >

[(E - E )+hcx][hcx+h’c;< I:(E -E)+h’cx]

H () R AR ) Ty =, = ') Ty o
GHlerx!) Q (k+x') 14 ), (1_1)j><1(h+K) rs %), (rz)s>

[(E1 -~ EO) +4fc;<][hc,< +.hcx':|[(E1 - EO) +l‘icx]

+

3

+

+

-+

(113)

The above terms are listed in the same order as the corresponding diagrams
of Figure 14. The reason for expressing the denominators in this manner is
to indicate explicitly the intermediate state energy denominators and to keep
track on the various terms. A check may be made on the exponential factors
and energy denominators by comparing the first and last terms in equation (113}.
One should be able to obtain the exponential factors of the last term by taking
complex conjugates of the imaginary factors in the first term. The remainder
of the terms may be checked in a similar manner.
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Combining the above results, the interaction energy correction AE/ et
is given by

AE/e4 = AE(Hq) + X (1) + X(2) + X (3) + X(4) , (114)

where the above quantities are defined by equations (85), (94), (106), (109),
and (113). Note that to this point the only approximation one has made involves
restricting the intermediate atomic states to the 2p levels; otherwise, the
above result is good to all multipole orders both in the electrostatic potential
and the radiation field. The various approximations will be examined in
subsequent discussions.

DIPOLE-DIPOLE APPROXIMATIONS

Approximations to the Interaction Energy

The results obtained in the preceding discussion are used in recombining
the individual groups given by equation (114) into a form suitable for subsequent
approximations. The dipole approximation will be applied and the results
compared to those of Casimir and Polder. The results will be given in terms
of corrections to the interaction energy due to only the electrostatic interaction.
In the dipole-dipole approximation this will consist of taking the terms
corresponding to L, =1L, =1, and M=+1, 0, -1 i_z_l_gl_e expression for Hég)
in equation (3} and setting the exponential terms elK' t equal to unity in the
various matrix elements in equation (114). Since higher approximations will
be considered later, the initial results will be put in a form suitable for use in
subsequent applications.

The terms in equation (114) will be evaluated in the order in which
they appear. The first term is already in the form desired; hence, it need
not be considered. The next term X (1) is defined in equation (94). Inter-
changing the coordinates for atoms I and II, and substituting for the volume
element dx in terms of KZdeQK , X(1) becomes

iy B
I{k+!) - R {1 + cosz(/fz,:c\')}

= 2K r 2 r 12 ' 1 &
X (1) —(—W> Ofx dk 4.7frdmc gx dxk irdflx ppLrpaD)

i(c+e) - 1 “i(kHe0) - T
XQ( ) 1><3 (¥e0) - T

(115)
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The above expression may be factored by noting that the wave vector K is
given in the same' coordinate system as the electromagnetic vector potential
A (p) Smg\e R is along ¢ (Fig. 2), the exponential factor k- R is just__

kR cos (k,R). Additional terms depending on the angular coordinates of «
are contained in { 1 + cos? (K k') } and the exponential factors in the matrix
elements. Hence, one needs to decide on the degree of approximation to be

ik.
used in the retardation factor e ¥ before performing the integrals over

dS?.K and dQ If the dipole approximation in e T is used then the only

k'’
factors depending on the angular dependence of the wave vector k are the
remaining two factors above. To determine the number of terms to be included

in an expansion of et , note that the coefficient of the term in equation (115)
is proportional to <r12> <r22 . If the highest approximation is to correspond

fo quadrupole-quadrupole orders, then the terms proportional to

<r 12><[v22><_:14> or <r12><r22><r§> which correspond to dipole-octupole

orders in r, and r; and to octupole-diple orders in r, and ry must be
included. Hence;L one needs to retain the first five terms in a power series

. ig-r .
expansion of e ; that is,

.2 i3 i
L — — — 1 2 3
. = + —
elK r = {1+1K r Y (K r) + 5 (:{ 1) 24 (K r) ] . (116)

Letting (7{1?’) =w and using the above expansion, the matrix products of
equation (115) give

<ei(x+xx).1><e—i(x+xv).r>= <{1+i(5.};) __;_ (5';’;)2 __2__ (;;,;’1)3
— (N4
4 (w-rl) }>
e 1 —— — —
><<{1 -1 (w-ry) iy (w-r2)2+—é- (w-r2)3

ra @D

(117)
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Neglecting combined powers of r greater than the fourth power in r; and r,,
the above becomes

(et 71 pC il %,
s B e ]
(GRS L et G |
A+ @i >

L @imEn) >
@b fi> (118)

These matrix products simplify considerably since

(w1 = Z <(r1)> = 0;

(ETP= ) w0 <(r1) (1) . (r1)>

i, ),k
where (?i)i are the Cartesian components of the position vector -1_"1 . The

first term is readily shown to be zero using the definitions of (;';)i in

spherical coordinates; <(w- r1)3> is shown to be zero since

(@0 = @@ @ = & @
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In addition, all the various combinations of the (?)i components are expressed

in terms of Spherical Harmonics® which are then integrated as sets of three
products each. Incorporating these results, the nonzero terms of equation (118)

are given by

CCEREY T
={ i 2 w w0 [Q’I’Z)t(i})Q + <<¥;)t<¥;)s>]
) Zhw w w0 @) @ S{E) @S
vor L L e 0@y [<<T{)t(i§>s<}l>q&§>h>
+ <<¥;)t(¥;)s(?;)q<}2)h>}} R

The above sums are evaluated using the results below, obtained for the matrix
elements over (1'1)i c:omponents.6

— 2m +1 -1 — . 27 +1 1
5. (ri)i = - —BL l‘i(Yl —Y1 ), (r1)2 =1 "3— Iy (Yi +Y1 ) ,

— 4T
(ry) = /=5 T Y/
3
6. The terms <G:)i(?)j (?)K (_1_")2> are evaluated using the Spherical

Harmonic Addition Theorem twice on each set of two, and using the fact

that (@), @ &, 6, >= (B @ @O, @, > = {@,@,@ @ >
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@Gy = 5 Doy = oo | G| @@y [Ree) [ ¥,
<(?1)i(?1)j(?1)1 (_r;)x> = (%) (%) <r4>(5ij PR T 6j1) ,
@@, G, @ > = (F) D oy 0, 0, (120)

where <r2 > and <r4 > are matrix elements taken over the radial portion
of the atomic eigenstates given by equation (86). To obtain results in terms
of k_and k' and their corresponding angular coordinates, one replaces w

by (k+x') atthe end of each calculation. For instance, the second term of
equation (119) may be expanded using the results of equation (120) in which
case one gets

Z CL)1: ws <(?1)t(?1)s >

ts

il

i
3 r12 >tzs Cot ws 6ts

_;_ <I‘12>|:K2+ K12+ 2kk' cos (Q"/c\r)] . (121)

Following the same procedu/l\'e, the terms of equation (119) are expressed in
terms of k,xk' and cos ({c\, k'). Substituting these results in equation (115),
one obtains

L)
{1+ cos? (Q,Q’)} e 1(rtr’) R

X(1) = (_—25—15%2?> szdK 4_£r e ()}ox'zdx'4£ do , PP pEG
y { s ___;_ (;_) |:<r12>+ <r22 >] [ (2 + x'®) + 2k’ cos (Q,Q')]
F B[ @) e () @) (et )] (122)

2
A A A A
X I:(K2 + k%) + 4k (k2 + k') cos (k,k") + 4x%" cos? (K,K'):I}
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A
Defining cos (Q,x') = cos © , equation (122) may be written as

_ 2K c C o2 1 iR R
X(1) = (-—5?—2—3—2 ,,; c) 6[ k2dk 6[ kdx [KK,_"“(K+K,) ] f dQK f.‘dQK'e KK
x {(1 + cos? @) -—; (—;—) (<r12> + <r22>) [(K2 + k') (1 + cos? ©) + 2kk' (cos © + cos® e)]
1 1 1\ /1

+T[ (?> <rl?-> <r22> + (?) (-5—) (<I‘14> + <I‘24>)]

X [(x2 + k') (1 + cos® ©) + 4xk' (k2 + k') (cos © + cos® @) + 4x%'% (cos® © + cos? e)] } . (123)
In the above result, the various approximations are separated as follows: the
first factor, containing only (1 + cos? ©), corresponds to the dipole-dipole
approximation; the second term containing a more complex dependence on O,
corresponds to the dipole-quadrupole approximation; and the last term

corresponds to the quadrupole-quadrupole approximation. In subsequent
calculations the various X (i) terms will be put in this format.

The next term to be considered is X (2), defined by equation (106).
X(2) may be recombined by interchanging the coordinates of atoms I and II in
the second, fourth, and fifth terms; this results in the following expression:

2(E,-E_) —- -
x() {‘2"?&?’%] J =550k {6ij_ ('/c\)i('?)j_ (’l‘\')i(’/‘\')f (Q)i(Q')j(Q.Q')}
ij

-i(ctch) - R o TWkrms o i
e +i(ktk') Ty ~i(kti')-Ty —~ —

X {(K+K') [E, - B,) + kox] < >< (ra)y (rz)j>

Kool ()R <+i(E’-E">.I~’><-i(E’-E").¥; -
* [(E, - EBg) * Kok [ (B - Eg) + Kek'] N N (F2); ()

+i(ktx')-R P e
e ~i{u+x') 1y +i(a+kt) Ty —
+ (K + K') [ (Ei - EO) +)‘ICK'] < >< (I‘z)i (I‘z)j>}

Noting that the coefficient of the above expression is proportional to < r12> ,

(124)

and that the factors (?z)i(?z)j in the above matrix elements give results

64



proportional to <r22> . T one needs to retain the first five terms in the

expansion for elK"r in order to obtain results accurate to quadrupole-
quadrupole orders. To simplify this expression, one needs to show that the

expansions due to elK' r for each of the terms in equation (124) yield similar
results. The matrix product (letting @ = x+x') corresponding to the first term
in equation (124) is given by

<ei(x+,c-).r1>€—i(x+m)-rz ('1‘.’2)1 ('r’z)j>
i 1 TRy . W1y 1 - 1 r; &
= |:<l1+ i(w-1y) Y (‘-"'ri)z '_IE (- r1)3+‘2'Z (w-r1)4]> <(r2)i (r2)3>
. <I1+i(w'r1) _—; (w-1y)? _—;— (w.r1)3+§ (w-1y)* }><i(w-rz) (rz)i(rz)j>
—— — — i e o 1 W 1 1 @, T ™,
+ <‘1+i(w-r1) ‘% (w.r1)2-%— (w-r1)3+5; (- xy)® ]> <-—2— e rZ)Z(rZ)i(rZ)j>
B L o — o e
. <[1 + i(@-1q) _—; (wry)? _—é— (w-1y)3 + 57 (w- 1)t I> QLG (w-1,)? (rz)i(rz)j>
BT L @ @t @I LG .E
+ <il +i(wery) - (e r)® - (W)t o (e ry) ‘ 24 (@ T2) (Q)“rﬂj

Retaining only the appropriate terms and neglecting the terms proportional

(o) <(?)i> and <(?)i(?)j(?)£> , one gets

G SN (RO X CE DI LGRS LG
AL -3 @RD |4 @R @G, .
<> R ACRCRCR
OIreLEE) <‘r'z)i('r;>j>]

(125)

— —
i-r
7. These factors alone, when e

approximation.

— 1, give the dipole-dipole
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All but the last two factors in equation (125) have been evaluated previously.
The remaining terms are evaluated as follows. Take <-%— (3-;;)3 (—f-;)i(;;)j>;
this term is proportional to <(;;)i(;;)j(;;)t(;;)s(;;)q> , Where i, j, t, s,

and q runover 1, 2, 3, corresponding to the x, y, z components of T.
Expressing the above factors in terms of Spherical Harmonics and using the
Spherical Harmonic Addition Theorem on each set, one shows that all the above
terms vanish. Incorporating these results in equation (125) yields

<ei(El?')-?1)> é—i&l}?)-?} &), (;;,j>

={<1> <<¥~;>i<?’2>j>——; CEXCIED S (GESINEAR
e 55 K@D L@, @) + 5 LG T @ T @, @ Y
+2~f;<(?o'-?~2>4 (1), (?z)j> } . (126)

Letting (?—?’) = V, one obtains a similar expression as given above for the
matrix products of the second term in equation (124). The last term in
equation (124) gives the same results as given by equation (126). This is
because of the alternation of plus and minus signs in the various products in
equation (125). The terms having opposite signs are those which do not
contribute. By combining the first and last terms in equation (124), X(2)
becomes
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)i
’i[ 2(E, - E )2
X(2) = [—2‘71“—,:3%] I {E léii' @y - R G+ (ﬁ)i(ﬁ')jd-xv)]
e_(}'ﬂ").n e+i(7c:l-7(.')-§
(k¥ ') [(B; - E) +Hox] D [, - B +Hox"]

x [(%) &> % '"'é‘ é ’(_:13)2<r12> & Wy g O S5t 0L @ 41'2) F g, (o) >J

oy E {( Y(5) & s 94 95 ©q o O () (T Ty >

ts

S LG R R L RCAN AN S

8 ts g
( )wtw w wh <(rz) (rz) (Tz) (1‘2) (rz) (l'z) >]]

. e-i(E’-F)-ﬁ
[E, -Eg) +Hex [[(E -E) +Hex']

{(-;_)z <r12> <r22) vV 6t5 611 Vv, <(rz) (rz) (rz) (rz) >]

[ 1) <>o,-4
. ;SQ[(%) (3)<e> 6, vy v vy, KE @ G @y >
s () GEDvpvg v v, <G @y ) G >
w () vvev o' G RTRGRANCANESS >]J}

(127)

The above expression may be simplified further; but for the present purposes
this is adequate since at this point one wishes only to separate the various

terms corresponding to the various approximations. 8

The next term to be evaluated is X (3), defined by equation (109).
This expression may be recombined using the following procedure. Interchange
coordinates of atoms I and II in every other term in equation (109) and

rearrange the quantities within the matrix elements, remembering that the
After expanding exponentials, one obtains

order of the terms does not matter.

8. Note that the sums over i, j are more complex and that one needs to

calculate Q?z) ; (xy) i ) ¢ (r3) s (T5) a (r3) h> .
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2
4 (E1 - EO)

X(3) =[—_ZW:| f L1 IZ[ o - (rlc\)i(Q)j}e-lx.R

% {(E1 ~Ey) [(Eii- Ej) +Ho] * [, -E) +‘ch]- 1[(}31 “Eg) +Eox] }
x {<H0(12) (—r.l)i(?z).j>+i Lx [<Hc(12) CINCIRES R G (?})i<'r;)t&'2>j>]
. [ Gl (0 T (7 (7 > - 2 ORI REANCINEA RN
+ G (E)t(;;)s(;‘])j(;;)j>]
- L; ; kr K, [@;Z’ (E)i(i')t<?;)s(’r2)l<?z)j>— 3 <H(§2) (?E)t('r‘1>i(?2)s<?z)1('r2)j>
SR CIRCIREANCSNEA N SR ¢ (E)t('rl)s(‘rl)l<ﬁ)i(“r'z)j>]

Ky Ko B Ky
ts lh

2 . e e e
[(H‘ R CIRCANCANCANTSNEIN) SRR A CINEAN I AN CAR AR
N R IR AN N AN RSP W AN IR AN IR AN S
q i t i s 1320 520y 2 j q iy i s it i 2 h 2 j
R RCIRCINEANEARCAR S [
MR CINCNCANCYNEINTA (128)

X (3) is obtained by expanding both exponentials in ??1 and ?;"2 and
neglecting the matrix terms proportional to the power of r greater than six.
Neglecting the higher powers is necessary since if one sets exponentials equal

— — 2
to unity, the leading term is <Hé2) (rl)i(rz)j>. The lowest term in Hé )

ﬁl-—

corresponds to terms proportional to (;;)1(;';)1 which makes the last terms
in equation (128) proportional to <r16 r22>. These factors then correspond
to the desired octupole~dipole orders. The above results are further simplified

().

by making use of the r;, r, dependence of H

@ = T o @) = () (o
iZj() ;Kt{<Hq (ri)t(ri)i(ri)j>-<Hq (rz)i(rz)t(rz)j>] adds up to

For instance, the sum
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zero, even though each individual term does not necessarily vanish. For
example, in evaluating the term <Hc(12) (;‘.1)2 (ry) 2(;"2)3>, one replaces the

components (?1). by their respective Spherical Harmonic equivalents, and

: Lo (2) . L, Ly M* - %
then substitutes for Hq interms of r{y * and r, ¢, and YL1 and YLZ
Factoring the matrix elements into factors depending only on atoms I or II,
one finds that the conditions for nonzero terms resulting from the Spherical
Harmonics require the sums over L; and L, to terminate at a given L,, L,
value. Hence, choosing the lowest L, one sums over the appropriate range

over M. In this case the term gives a nonzero result which in turn is

cancelled by <Hé2> (?1)3(?2) 2(?2)2>.A similar procedure is used to show that

the fourth factor in equation (128), consisting of four terms of the form
2 — — — — —_—
<Hc(1 ) (rz)q(rl)i(rz)t(rz)s(rz)j>, adds up to zero. This may be verified

quickly by taking each corresponding set of terms and interchanging the labels

(2)

2
on the quantities, and, since HC(1 ) (ry, ry) = Hq (ry, ry), the sum of terms

vanishes identically. Thus, the nonzero terms which contribute to equation
(128) are given by

4(E, -E)? | = -y
X(3) =['—?l?n_c0_] [ «kde [ a7, (6ij-(fc‘)i (Q)j}exx
0 ij

1 -1
X * Fre -
{(E1 -E) [(E1 - Eo) +Axc,<] [(1‘:1 -Ey) +A1cx] [(E1 E)) +hcx] ,
- 2) - - - - 2) —. - = =
x ‘@c‘f’ RS R KHC(I ’ <r1>i(rz)t(rz>s(rz>j>—2<iq EARCANCANCIS
2) = - - -
+ <Hc(1 ) (r1)t(r1)s(!‘1)i(rz}j>]
1
*34 L L ft %5 ¥l *n
ts 1h
A AN A W AN AN AN AT PTG SN TA N AN S A I CAMER) >
x q 113 (02) (T2) AT2) ) UT2) (1204 q AR A A I i 1 R
. e e . . . 2) . e e e .
S R R R R AR AN AR AR S R R RGN TN CIR AN AN

2) = o~ e e e .
+ (rnt(rl)sml(rl)h(rl)i(rz>j>] } :

(129)
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Later on, subsequent simplifications will be performed when each of the
preceding terms is considered.

The next group of terms to be considered is defined by X(4) and is
given in equation (113). X(4) is simplified using the same techniques as
before and results in the following expression:

1
X l:{ ,:(E1 - EO) +hcx] [hcx +/th'][(E1 - EO) +hcx]

1
* [(E; - E)) +Hex] [Hex +Hex' | [(B, - E)) +Hex']

1
* [(B, ~E,) +¥ox] [(E, - B + (B - E)] [(E, - B)) +hex' | }

« e—i(x+x1)-R éi(’(""(')'rl (;'i)i(?l)j><—i(x+x').rz (;.’2)1 (;.’z)s>

1
* { [:(E1 - EO) +ch] [(E1 - EO)+(E1 -Ey) +Hck +hcx'] [(E1 -~ EO) +,Kc:<:|

1
* [(E, - Ej) +Hex] [(E, -E)+(E, - E)) +Kex + KCK'] [(B, ~Eg) +Hok']

1
* l:(Ei—E0)+hcx:| [(Ei—E0)+(E1-E0)] [(El—EO)+hcx’] }

-i(Tc’-E")-E<j(?-}")-¥] i ><-i(§’-}")-?2 - = >
X e e (ri)i(ri)j e (rz)l (rz)s . (130)

Expanding the exponentials as before and retaining the appropriate terms,
we now have
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2(E, - E )¢
X(4)=[ 1" "o

-~y | [ xdx [w'aw [aa, fda, x % 12:% ‘ﬁis- ONOR Ha# - (Q')j(ﬁ')l‘

e-i(ic+x')-R ’ 1
X

1 . Be(u + k')
Kol +w) | [(€ - By +hox * [(&, “Ep +Hie] [(E, - By +AhexT] [“ 2(E, - E0>] }
x{ (3) <> (F)<eP> 800 - L @y [<(;;)t(;;)q(?1)i(;;)j><(;;)l(;;)s >
+ @, @) > @, G @), ('r'z)s>]
tar L T @, wwp wpx [<(’r’1)t(ﬁ)q(r})h('r])f(?])i(?])j><('r;)1<?;)s >
+ 6T, & o ), 0 >, B (), B >

e 0y, > g 0, G 0, G >]}

e-i&'—?{l)-ﬁ A
+ -
[(Ei-EO).,.hCKJ 2(E, - E)) [(El-EO)+th']

* [ﬂEl -E,) +1hcx +Bex] [(E1 Z Eol) Thox (E, - E0)1 +dck H
x{ (L) B (2) D 6,8, -+ 2 vy [<<E)tﬁ)q<ﬁ)i(ﬁ> NGCICH
+ L@, E L@ F (), F) S>]
57 % NRRANS [<<?1>t(’r])q<E>h<?.)f<?1>i<?,>j><<?z)1(‘r’z)s>
+ 6 (T, @ G, > oy @) Fa) g B >
+ <<E>iGi)j><G2>t<?’z)q<?;>h(_r;)f<?z)z<’r2>s>] ] : (131)

— —_—
. - . . . ~i(k+x').r
The above expression has two distinct terms with coefficients e ( )

-i(k-k')-T . . .
and e ( )T, as well as various denominators. Subsequent calculations

show that the two terms may be combined into a simpler expression. This
will not be done in general, rather each one of the above terms will be con-
sidered as corrections to various multipole orders of the electrostatic inter-
action energy given by equation (85). Once the X (i) terms are defined, as
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above, one can write the interaction energy AE in terms of corrections
resulting from various approximations as

4
= + +
AE/e AEd—d AEd—q AEq—q

Dipole-Approximation AEq_4

The terms corresponding to the correction energy AE have been given
as sums of terms corresponding to the various approximations to be considered
in this calculation. To evaluate the first term AE ded’ which belongs to the

dipole-dipole approximation, one collects all the first terms in the X(i)
expressions and adds them to the electrostatic dipole-dipole interaction term
given by equation (85). These terms are obtained by letting L; = L, =1 and
m= -1, 0, +1 in equation (85); this yields

. 2 2 2
AE H(2)> _ E (-1) ’(2)’] <R1,0(1) I Ty lR1,0(1)> é1£(ﬂ)l Ty IR1LO(H)> 132
1/ g4 2(Ey-E,) B° [(3)(3) (1 - m)!(1+ m) (L - m)I( + m){] (132)

- m=-1

(1)

Summing over m, and redefining this quantity as X (0) , one obtains®

2 2
W _ S>> (133)

X(0) - T 3R® (E, - E,)

The corrections to this term, due to X(i), where i=1, 2, 3, 4, are given by
the first term in each of the expressions given by equations (123), (127), (129),
and (131). Combining these leading terms, the infteraction energy AE fto first
order (dipole-dipole approximation) is given by

9. Note that < r12> is a matrix taken over only the radial portion of the eigen-
function given in equation (86).
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<D e ]

AE = -
d-d [ 3R° (E, - E )

K dx [ di (1 i) R
(ad) JOE S () SF R et

(E,-E_)? — —
1 70 dxt AN A A A A A 1
+[ ] Il By % léij— @), 60 - R e+ (x)i(?')j(x-u'), () & ¢

K

e+i(}'+}")-ﬁ He e-i(}'-}")i }

* (K+K')[(E1-E0)+KCK'] +[(E1-E0) +ch] [(El-E0)+}fcx']

e-i(Té&")i
YY) [(E, - Ep) + Kex]

(E, - E )? — -
1 0 r an -ie-R 4 (2) =, =
n [ - J f (6_‘3 - (:lc)i(x)j } e @q (r,)i(rz)j>

2w Hc K

1 -1
X’ (E,-E)) [(E -E) *Hox] * [(®, - E) +Hex|[(E, - By + Kex] }

(E, - E )4 — - -
+[- L } £l ey {ois-(,’?}i(ﬁ)sHajI-(Q')j(fc")l}l(—;)z@f) I 615}

e_i(K+KI)'R 1 e — 1 {4+ He(k + k')
) Hetk + k') [(Ei—EO)-PKc:(]z [(El—EO)+HcK'\ [(E,-Ep +Kcx] 2(E, - E)

e-i(Tc'-T(')-E A
¥
[(EI—E0)+4lic:c] 2(E1—E0)[(E1-Eo)+hcx']

i 1
+ L}
Ei_E0)+hc" (El_EO) +HKck ' }

1
* [2(}31 - E) +Hcx +Aicx'] X ’ (

(134)

This expression may be readily simplified by summing over the i,j and £,s.
These sums contract easily due to the 6-functions included in the respective

terms. When evaluated, the sums in question give
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L {Gij - (@) Ge) - (R R+ (f%i(Q')j(?-f?')] 54

i
- _ A A _ Ny Ny 5

izj ;S{éis (x)ims}{aﬂ CONCYY } 6%
= l1+cos2 (fc\,fc\')} . (135)

Further simplification is attained by expressing all the coefficients in terms of

<r12> and <r22 > This is accomplished by using the sum rule [1,19]

() oy -3 SOl &l (Fol | €l Fol [l Bl (4

and the approximation [15] <£ I i) |m> =—i-l‘;—t- (EI - Em)<£ | T |m>,

given in equation (98).1% The sum over I is over the electrons of atom I and
the sum over m is over the 2p atomic states. Hence, the quantity 1/ Zucz

2
<r>(E1—EO)

3(Hc)? ?
operations above, Using the results obtained in Appendix B for the integral
over solid angles dQK and dQK, and using the definitions xR =b, k'R=8,

which is obtained by carrying out the indicated

is replaced by

the second term in equation (134) reduces to

2 /.2 2 "
xy @ - e 8, - 5 <y D <y ) [bap [ £981E®) F@) + 260 G(B)
o 3% 72 (he)' R? 5 5 (b+8) © (137)

10. Reference 19 gives this as 47y Z via',a) l<ai ?Ia'>|2 = 34,
a!
-Ea) = 27Hv (a',a)

where (E |
a
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e N

Fo =%

where

F (b) =[—S%—p— +G(b)] ,  G(b) = (_cosb _sigb) ,

(1)

where one defines the above expression as in X (0) , the superscript
denotes the degree of approximation as before. Letting (E -E )R/,h' c =
(1)

the coefficient of equation (137) may now be expressed in terms of X (0) as
follow: Taking

2Mic (B, - E)” <r12><'22> _ 8(Ei'Eo)3R3 < >< >

7% 3% (He)! R T 3wt (Hc)’ 3 R® (E, - E,) ’

equation (137) becomes

3 (1) oo 0
<@ - [sa X (0) ] [bap [ £9E {F(b) F(g) +2 G(b) GB) |

37 5 5 (b + B)
(138)
Applying similar modifications to the third term in equation (134) and
remembering that the sums over i,j resultin (1 + cos’ ©), one obtains
2
3 =)
X(Z)(“=(E_E)<><> ax [ wan (55) [ e, [ a0
(c£)® (3)* o 0 K+ K K K
. } i) R e+i(E3rE7).§
x {1+ cos® o +
[(Ei—E0)+ch] [(Ei-EO)+)fcr<']
Ke (cigt) e TWKD-R
-E X E, -E A
[(E o +Her][ ¢ o) +Aex’ ] (139)
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Evaluating the integrals over dQ using results in Appendix B and using the same
definitions, the denominators in equation (138) may be modified to give

(1) oo o
(1) _ 8a*Xx(0) 1
X (2) = - 3 g'bdbdfﬁdﬁ(b+ﬁ> [F(b) F(8) +2 G(b) G(8)]
1 + 1 + (b+8)
“1@+b) "@+p) T (@+b)(arp) . (140)

The next term to be evaluated is given by
(E

- E )2 )
(1) 1 0 1 -1
X(3) =[ - ] d
2mihe ({" « li(}.:;1 -E) [(E1 -E0)+)fc:<] * [(El-EO)+)fcx]T:,

-ix.R AL A 2 — —
x [ da e Y {oij- (x)i(x)j}é{q) (rl)i(rz)j> . (141)

ij

To consider the sum over 1i,j, one defines { 6ij - (Q)i({c\)j } as ?ij'

Substituting for Héz) from equation (3) this term gives

@) ~ =
IEMCH (ri)i‘r”j>

i

L
- (1) 2 (47) (Ly + Ly)! L1 Loti
= ?.. " .
:/:j ? é ;‘2 ;1 RUE on 1) (21,4 1)) /2 Gt D G

i —_ m* . _m:}:
x X GRS (I)><1'z)jYL2 @ >

{(Ly + m)! (L; - m)! (Ly - m)! (L, + m)"

(142)

— M
The matrix elements containing (r)i and YL are evaluated by taking each of

the components (E)i expressed in terms of Spherical Harmonics; the results
are:
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2\

"

38
e

N
1]

1 2T
ar N3 (‘Sm,-i - ‘Sm,+1> 6L1,+1 ’
i 27
1 j27 6
. 47 3 (‘SM,-—1+6m,+1) Ly, +1 ’
i=2
A m i 2
<(r1)iYL1 (1)> g 4T N3 (GM,O 6L1,+1) g (143)

and similar results are obtained for (;;)i' Noting that the L;, L, values

i=1

AN
:S>
_—
e
B
i
i

are restricted to L; = L, =1, equation (142) reduces to

@) = =
i ?ij<Hq (ri)i(ri)i>

| 2y am) 2D 2D *{j 1
- 3 R® (1+m)! (1 -m)?

m=-~-1

A m::: A _m:}:
X 123 i <(r1)iY1 (1)> <r2)jY1 (2)> . (144)

Performing the above sum over i,j and the matrix multiplications, one
obtains

3 R (4m)?

(2) —. — \_ (-2)@n) Lz >L<rf>
%?ij <Hq (rl’i(ri’j>“

Xl —‘231) Py + (—%) Fpp + (i;_) 973,3}

(£) GDE) D) oo [00,] 1

(145)
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X(3) (1)

Substituting this in equation (141) and redefining the constant terms yields

=a3X(0)(1) f“’bdb 1 1 4o R .
®@®) aerm "armr) ] ®ee T {seoste —1) L (146

Performing the integration over GK, cpK, using results in Appendix B the

above equation simplifies to

(1) 2
(1) _ 423 X(0) b?db
x3) ' = - I e {Fo) +20m)) . (147)

The last term in equation (134) is simplified considerably since the
sums over i,j and £,s collapse to (1 + cos?®©). Carrying out the integrations
over dQ and modifying the results as in previous terms, one obtains

5 (1)
xa) Y - éa—};‘ﬂ%—— [ bdb [ gdg {F(b) F(8) +2 G(b) G(B)}

1 1 . _(2a+b+p)
Y ®+8) | @+B)E T (@+b)(a+p)(2a)
1 1 (2a+ b+ B)
F@n) [Za (@a+B) (a+b)(2a+b+3)(a+B)J - (148)

The above result may be expressed in a more symmetric form by rearranging
the fractions as follows:
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(1)

x4t - %L— [ bab [ pdp {F(b) F(g) +2G(b) G(A)
0 0

1 1 . 1
x (a+b) (b+B)(a+b)  (a+b)(a+p)

1 1 i
+(a+b)[(b+3)(a+ﬁ) * a(a+ﬁ)] } ' (149)

Collecting terms, one obtains the following expression for the interaction
energy AE/e* to first order:

(1) (1)

+X(1) 7 +xX(©2) (1) +X(3) (1)

(1)

AE = X(0) + X (4) ,  (150)

d-d

where the above quantities are defined in equations (133), (138), (140), (147),
and (149). This expression gives us the interaction energy to first order
expressed as groups of terms corresponding to various types of interactions.
The reason for writing equation (150) in this form, as mentioned earlier, is
to pinpoint the sources of the interaction energy. For instance, the first and
fourth term I:X(O) (1) , X(3) (1)] depend on the electrostatic interaction

(2) (2)

through its operator H ’; whereas, the other terms are independent of Hq .

In addition, one notes that X(3) (1) is due to a mixture of electrostatic and
field operators and the remainders are due to either the electrostatic operator

Héz) or the field operators A.P and/or A-A. These terms are discussed

further in the following paragraphs.

Comparison with Previous Results

The expression given by equation (150) corresponds to the results
reported by Casimir and Polder [1], and Power and Zienau [4]. Part of these
results agree with those reported by Leech [2] in his attempt to solve this
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problem to first order. In particular, the term corresponding to X(3) ()
agrees with equation (29) of Leech's paper [2]. This may be seen by making
appropriate substitutions of variables and constants as follows: x —b,

(1) 1@. 3cosx 3 sinx)
X;=X(0)", and {F(o) +2G(k)} —fsinx+22E =ERx)
(1)

Agreement with Leech's work is also found for X (1) to within a factor of

2 and with various terms contributing to X (2) (1) and X(3) (1) . No further
comparison is possible since he arranged his expressions differently than is
done here. Leech's inability to verify Casimir and Polder's results is because

of this error in X (1) (1) and because he obtained the limiting cases before
doing the integrations over B. These integrations are required to show that
equation (150) is indeed Casimir and Polder's result. This is done below to
show the correctness of equation (150). '

To perform the integrations over B in equation (150) one considers
once more each one of the terms containing g integrals and then recombines
the results to obtain an expression involving only integrals over b. The first

element to be considered is X(1) (1) defined by equation (138). Rearranging
factors yields the integral factor given by

N ~ 8dg F(B) v ~ BdB G()
Ofbde(b) ({“3—(573%+20fbdbe(b)g ﬁ—(%r—ﬁ%— . (151)

These terms may be evaluated using the results given in Appendix C. For
example, the first term above transforms into

o oo d F( B o ) Zd F(
of bdb F(b)of Lﬁ——ﬂ(mﬁ) = zofbde(b)Of Lﬁ—ﬁL(B+b)(B_b) . (152)

A similar transformation may be made in the integral containing G(b) and
G(B). Using results given in Appendix C for the g integral in equation (152)
and for the term containing the G function gives the desired results for the

expression in (151). Substituting in X(1) (1) yields
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(1) 8a% X(0)

X\) = 3 21 J BF

(1) °° !
[_1 [ D eaib-3 P @ osib-se d
0

w0 2ib
f.f'%F{(H+Ziﬁ-5¥-61b+we
0

- (b* - 2ib® - 5b% + 6ib + 3) e‘zlb} ]
(153)

The next element to be considered is X (2) (1) given by equation (140).
To perform the B integration it is necessary to rearrange the fractional factors

as follows:

1 (b +B) ]

1 1
<b+,8>[(a+b) Ta+g T (a+b)(atp)

_ (a+b+a+p) + 1
(b+B)(a+b)(a+pB) (a+b)(a+pB)

b(a+b) +B(a+p) } e

_ 2 1 1
) <a+b) { [ (b+B) " (B-D) ] T b -p) (b+B)(a+p)

With this modification, X (2) (1) becomes

. (1) %0
16a3§2(0) J bab [ gag { F(b) F(8) +2G(b) GB) }
0

x@z M - -

1 1 1 b(a+b) +8(a+p)
X{ ( ( ’ ) +(a+b)(a+ﬁ)(b+ﬁ)(b—ﬁ)}

a+b)\ b+58 B-b
(155)

By arranging the terms in this manner, one readily obtains the B integral of the

Analysis of this fraction shows that it is symmetric in b and
Interchanging b and g

second fraction.
g in all the factors except the one containing (b - 3)

results in a change of sign. This feature is utilized by taking
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s ® b(a+b) +8(a+8)
bdb | pdp (F(b) F(B) + 2 G(b) GW} [ J
Of Of { (a+Db)(2+8) (b+7) (b F)

and separating the above quantity into two parts given by

100 [>e] 1 o0 [~ e}
?f...dbf. _2—«[ f...dB .
0 0 0 0

then interchanging b and g in the second half to obtain

100 1oo
T g [

Hence, one sees that this part of equation (155) gives a vanishing contribution.
Using results in Appendix C, the other portion of equation (155) is integrated
over B, resulting in

(1) o0
(1) _  16a* x(0) T db - i
x@ e = 37 [Zof m{<b2+3ib~3>e‘b-<b2—3ib—3>elbf

o
I 4 . . 2ib
17 f (a+b) ’(b +2ib® - 5% - 6ib+ 3) e

- (b*-2ib® - 502+ 6ib+ 3) e'zib]}
(156)

(1)

X(3) is already expressed in terms of an integral over b, hence, one
only needs to replace { F(b) + 2 G(b) } by its definition. Thus, one obtains

(1) _ 4a3X(0) bdb b
X(3) - 37 [21 f [a(a+ b)z]

X ‘(b2+3ib-3) etP _ (b? - 3ib - 3) e“b}

(157)
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The next term to be considered is X(4) () defined by equation (149).

Before performing the B integration it is necessary to rearrange the

denominators involving b and B, in a manner similar to the one used in

(1) . In doing this, one is guided by the symmetry displayed

simplifying X(2)
Considering the fractions in equation

by the quantities involving b's and g's.
(149) and rearranging factors yields

1 1 N 1
a+b (b+ B) (a+B) (a+ b)(a+p)

. 1 )[ 1 Lt ]
a+b (b+p)(a+pB) a(a+p)

_ (2a+b)[ 1,1 ]+a(b+ﬁ)+ﬁ(a+ﬁﬁb(a+b)
N (b+B)  (B-Db) a(a+b)(a+p)(b+p)(b-p) )

a(a+ b)2

(158)

The last term in the right-hand side of equation (158) is symmetric in b and B
in all terms except (b - 8). Performing the same operations leading up to
equation (156), indicates that the second term in equation (158) does not con-
tribute to the B integration of equation (149j. Hence, considering only the

(1)

first term in equation (158), X (4) becomes
(1) sdx) P | % v r
x4 = |FEa—| [bdb [pds [F(o) F(e) +2G(b) G
0 0
(2a + b) { 1
><la(a+b)2 [b+3+3_b] } . (159)

Recombining the above factors shows that the g integrals are the same as in the

first term of equation (155). Using results obtained in Appendix C, X (4) (1)

becomes
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(1) =
(1) _ 4a%Xx(0) (2a + b) bdb
X(4) = 371.2 6[ a(a+ b)Z b5

x{f{ [(b2+3ib-3) e'® (- 3ib - 3) e'lb}
+f€ [(b4+21b3- 5b%_ 6ib+ 3) o2 P

- (bt - 2ib® - 5b%+ 6ib+ 3) e'zlb] } X (160)

With all the terms in equation (150) given in terms of integrals over b and

X(0) (1) as coefficient, the interaction energy correction AE may now be

d-d

expressed as a function of these new terms by separating the integrals over
+ib +2ib

e and e as follows:

db |, __22 L b L2 2a+h
BV YY) 2 \a(a+b)? 2 \ (a+h)?

x [(b2+3ib- 3) e (b2 - 3ib-3) e'lb]

3 o0
AE, . = x<0)(1){ 1422
0

4_a3f’db 1 a_ 1 f(2a’+ab
* noﬁf 2 "(a+b) "4 \(@a+b)?

% [(b4+ 2ib% - 5b% — 6ib+ 3) e2 P _ (bt - 2ib® - 5b+ 6ib + 3) e'21b] }
(161)

Note that the first term of the above equation results when only the electrostatic

interaction is considered; this yields the proper limiting case. By recombining
the fractional quantities of the above terms, one obtains

L 2a__ b? b :‘ L1 |2a%+ab _ L)
T (a+b) 2 | a(a+b)? 2 | (a+Db)? T\ 2a
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Substituting into equation (161) yields the following expression for AE ded®

oo . ib 2 ns -ib
_ (1) 423 bdb | (b®+3ib-8)e (b -3ib-3) e
AEy 4 = X(0) {” 3n of ath 21 21

b

b} (b + 2ibP - 5b% - 6ib+ 3) e
z 21

=21
(o - 2ib° - 51+ 6ib+ 3) e 2P ]
- 21

(162)

This is essentially the Casimir and Polder result expressed in terms of
complex quantities. The singularities appearing in the above expression present
no problem, because when using stationary state perturbation theory to

approximate physical situations, one takes the "principal value' of the sums
or integrals appearing in the results. To transform equation (162) into real
quantities, one considers a contour in the complex plane which includes the

interval of integration in equation (162). This is done by taking appropriate
contours which include the real axis. The first integral term in equation (162)

is integrated by first considering its factors, as follows. Taking

b -3ib-3) &P
- 21

. i
f db (b2 +3ib-3) e
ab® 21

and letting b — - b in second integral, as well as exchanging appropriate limits
of integration, results in the following expression

T db (b%+ 3ib-3) e P
4 a b’ 21

The principal value of this integral is obtained by using the values given

in Appendix C; the result is

- f°° db_ (b+3ib-38) e" (o
"t ab’ 21 "\ 4a
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The results for the other integral terms in equation (162) are

. 23
~ db [@4+2ib3-5b2—61b+3) e21b_ (bt - 2ib% - 5b%+ 6ib+ 3) e lb]
P.v 6f 2ab’ 2i 2i
Y
“\ 4a i
. f [(b4+2ib3—5b2—61b+3)e21b (b4-2ib3-5b2+6ib+3)e‘ZIb]
Zab(a+b)2 21 - 51

B < ) [ — = (v +2y° 4 Sy + ey + 3) e ;
0 (az+y2)

+2ib

where iy =b in the integration containing e and -iy = b in the

integration containing e_2 ib . (See Appendix C for details.) Combining
these results indicates that the contributions of the residues at the b origin

cancel the contribution due to the electrostatic interaction X (0) (1) . Hence,
Ed—d becomes
1 -
13 x Y P aytrepesytieyes) 2V
AE = Il > . (163)
d-d 37 2
0 (a? + y%)

Having AE d-d in the above form allows one to compare results directly with

those of Casimir and Polder as given by Power and Zienau in equation (28) of
Reference 4. This is accomplished by letting y = uR, (E1 - EO)/hc =E and

recombining the coefficient into dipole moment matrix elements. Making these
substitutions, as well as using the definitions for a, equation (163) becomes

4(E, - EO)3R3X(O) (1) R @R)!du ,-2Ru
AEd-d - He)® (3m) 6 “:(E1 - E )]2 }2
ROJ|——0 1 L
dc

2 5 6 3
x [“ (uR) © @R)? T WR)® " (uR)? ]
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(1)

Replacing X(0) in terms of the expression given in equation (133) yields

ARG o R
d-d 327TR2 (c)® 8 [< E, >2 2] 2
“He J *¢

2 5 6 3
8 [1+ (uR) * (uR)? + (uR)? + (uRr)? ] . (164)

The integral form is in agreement with previous results. Comparison of
equation (164) to equation (28) of Reference 4 shows that Power and Zienau
omitted some factors of Kc. The reason may be that in part of their discussion
they let i=c = 1. Analysis of the rest of the factors in equation (164) is
simplified by writing down equation (28) of Reference 4:

M 4 <CI(1)> 2 <CI(2)> 2 E2 © l.l4 e—2 uR

AL - T r XcR*

du
0 [E2 + u2)?

x[ 1+ (uR) + (uR)z + (uR)3 + (uR)4 } . (165)

A comparison of this equation to equation (164) shows that if one lets

(E, -E))
—%— =E, (Hc) is left out in the fraction inside the integral. The

{r2)

2
dipole matrix elements <{g(i) > correspond to —?j’—- . Power and Zienau

define this matrix element in equation (23) of Reference 4 as

2
L [qm/ﬂ‘“ qﬂ/o‘“] =&y @)y, (166)
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where they take the sum over the intermediate 2p atomic states, This
operation is equivalent to the relation used here, given by

5o | Gy [my<m| Gy fa> = | Gy [«
=+ &b o

—

where m is summed over the 2p intermediate states. By letting ?1.5 er
and making the above comparison of matrix products, complete agreement is
reached between the results obtained here and those given by Power and
Zienau [4].

Since the main objective in this calculation is to obtain the form of the
interaction energy to various multipole orders, a discussion of equation (164)
will be given after the higher multipole order corrections are evaluated.

There is a twofold reason for showing the detailed correspondence between the
results obtained here and those of previous authors: (1) it shows that the
overall procedure used here is correct, and (2) it provides the steps to be
followed in subsequent calculations where a detailed discussion is not practical,

DIPOLE-QUADRUPOLE APPROXIMATIONS

Introduction

The dipole-quadrupole order corrections, AEd @ to the interaction

energy given by AE are evaluated in this discussion. The term AEd

consists of the dipole-quadrupole order terms in the electrostatic interaction
energy and the second set of terms in each of the X (i) expressions given
previously.

Starting with the electrostatic interaction energy given by equation (85),
one obtains the dipole-quadrupole order terms by setting L; =1, Ly = 2,
m=0, £#1 and L; =2, Ly =1, m =0, +1. Performing these operations and

(2)

defining these terms by X(0) yields

88



B

(2) (1)4{(1+2)'}<Ri ol 1|R1 o><R1 oI 2 |R1 o>

x(0) - R® (3)(5)(2E —2E)

- ! |
m=-1 (1-m)!(1+m)!(2-m)!(2+m)!

<1>2[(2+1> } <310 ) lRi 0><Rio

R® (5)(3)(2E —2E)

ALY,

1
8 Z l:(z-m)!(2+m)!(1_m)3(1+m)g ] . (167)

m=-1

After performing the summation and coliecting terms, one obtains the follow-
ing expression

(2) _ <ri2><‘;> . (168)

- = —
R* (E, - E)

X (0)

The next term corresponding to X(1) (2) is obtained from the second
term in equation (122). After factors are rearranged, this term becomcs

x)® <[« Grgitmma] (€ &) Jwox [ wan (747)

-i(k+k')-R

(169)
x | @ f e , {1+cosze}{(:cz+x‘2) +2 kK cose} e

Separating the coefficient of the above term and replacing ( 1 ) ( ! 2)

i vy || D ny

3(fic)? 3(Hc)? ’
expression for the above coefficient:

o GG e myt o GOEEDE |

(3)° (2)% n* Hc)t (3)% (2)3 * (Hc)?

by one obtains the following

89



Using equation (86), one obtains the relations

{2 = —(%)-(-E‘Ly; D = L6—2!-)-(—%“-)4;

27 27
2<r4>

5 H

D) =

which may be used to simplify the coefficient given in expression (170), as
follows:

2
(2) (E, - E)

(5) (3)5(2)%7" (he)® <<‘14><rzz>+ <"12>Qz4>>

By using results in Appendix B for the integrals over dQ and substituting for
k and k' using previous definitions, equation (169) becomes

2) o )
2) _ 24a3X(0( 1 )
X(1)" = -—(W%r J pab ({Bdﬁ b+ B

0

x {(b2+/32) [F(b) F(8) +2Gb) G(B)]

(171)

- 2bg [f}(b) 5 (B) ;,; F3(b) F:L(ﬁ):' }

In Appendix C the B integrals for this expression are evaluated as follows

90



G S S

b) F() + 2 G(b) G(8)]

2 _  2ta8x(0) @ gap[F(
XM = -y (2 vap [ (8+b) (8 - b)

gdap[Fm) FB) +2G0) cE)]
+2 [ bdb f (B+b) (B - b)

AR

_ 82dgl F(b) F (8) + 4 Fy(b) Fy(b)]
b | R

2428 x(0) (2 oo
- _ﬁé)-}ﬁ_ Of bdb{[F(b)+2G(b)] +or [ Fm) —4F3(b)]}

+2i [ bhdb {[F(b) F' (b) + 2 G(b) G (b)]
0

. ) (172)
- LF0) 70 + 4 Fym) F{'(b)]}];
where
F(b) - L <[b2+ib—1] P kP -ib- 1] e'1b>
(®) = ¥ 21 21 ’
F o) = L ([b2+ib— 1] e’ L 1b? -ib - 1] e 1P )
(b) = o7 21 21 ’
1 [ b2+ 3ib-3]e®  [b*-3ib_3]e P
Fz(b) = 3 21 - 21
+ 1 (b2+3ib-3]e®  [*-3ib-3]e P
Fg(b) = 73 21 * 21 ’
Gy - & (Lib-1] el _ L-ib - 1] e 1P )
= 21 21 ’
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s ib . _-ib
G+(b) _ _513_([1b—211] e 4 [—1b-2ii] e ) ,

b = L [ib® - 2b% -~ 3ib + 3] oiP [1b3+2b2—31b—3]e ib
Fb) =33 21 21 ’

F7(b) = — [ib® - 2b% - 3ib+ 3] & © _Lik® +2b* - 3ib - 3] P
“ B 21 51 .

Using these definitions, the result for X(1) (2) is quite compact. In addition,

+ -
the products F(b) F (b), $(b)F (b), ... etc. are just the difference of two
squares, since the binomials merely change sign in the second term.

The next term to be evaluated is X (2) (2) given by the second group
of factors of X(2) defined in equation (127). Expressing the coefficient of

this expression in terms of <r12> and <r22>, one obtains

(2) (E ‘E)3<>

. N K A A Ay oAy A A A A
x@? - g | ?J { - 0000 - @) R+ ()0 (e w)}
e-i(}lf—c")-ﬁ e+i(§1?)-_ﬁ
(v x) [(E] - EQ) +Hiex] MTEYD) [(E, - E) +hc:<']

(4 B D et s )

fic gt kx") R
+ [(El—EO) +/hcx] [(Ei_EO).,anKv]
<'—; ZS {( ) < >< >"t"s O O35 Vi Vs @)t(?z)s(?z)ﬁz)j >}>

The sums over i,j and t,s are evaluated using the same techniques as
outlined previously. The results for the various terms are as follows:

(173)
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Y, ‘oij - Gy @ - G+ (Q)i@v)j(ﬁ.ﬁu] (-3) ) (L) €G> 0,08, 5

ij
i 2
= (-—;—)(—;") <I‘12><:;> l (> + k') (1 + cos® )+ 2 kx!' (cos © + cos® e)l ,
2, lﬁij - @@ - @) G+ (Q)i(ij(Q-Q')}(—%) é R RN EANCAI

ij
{(DEE) Ermarato it |

The terms containing the v A factors have a similar form with only a minus

t’
sign in front of the factors 2 k«' (cos © + cos® ©) and 4 k«k' cos® ©. The
evaluation of these sums is very lengthy and will not be given here. The

procedure is simply to carry out the sums over t,s first and then over 1i,j.
When matrix elements of the form <(E)t(;‘;) s(?z)i(?z)j> are included,

the best procedure is to evaluate the various combinations, using the fact that
the result is invariant under interchange of t,s,i,j. Hence, the number of
matrix elements that need to be evaluated is reduced considerably. For
instance, in this case only 15 of the 36 possible terms need be evaluated. Of
these, only 6 are nonzero and are given by

O@,@,6, > =5, =123,
@O @ 6O @, >= @,@,60 0, >
B G @ > = &H,6O,06 >= (3)(F) >

(175)

Having evaluated the matrix elements, it is much easier to calculate the sums,
since all the zero terms can be systematically excluded, allowing one to obtain
the above results. This procedure is used in the equations to follow, The
integrations over dQ are done using the I‘eS_l_l,lt;S. in Appendix B and using the

i t
fact that the integrals over (1 + cos? Q) eﬂ('ﬁ-" ) give the same result. In

addition, one finds that the integrals over cos © and cos® © are related as
follows:

93



+ (k+e1) R

f f (cos © + cos® @) e dQK dSZK,

)R
k)R g, . (176)

=—ff(cose+cos3e)e 8,

The significance of this result cannot be over estimated since the negative
gign introduced by the factors containing Vi Vg is exactly offset by the

integrals over dQK, dQK, . Incorporating this simplification in equation (173)

and using previous definitions as well as performing the integrations over dQ,
one obtains the following for equation (176).

(2) 2 <t L
X@™ = Graramoar J bdb [ pds (b+ﬁ)

X{ 1 1 N (b + B) ]

(a+b) " @atp T @atb)arp)

2
" { (-5)(5) & <<b2 + 6 () [F(b) F(8) +2G(b) ()]

[F(b) F () + 4 Fy(b) Fy(8)] )
bg

+ 2bB (-257?)

N (- _;)(—;-)(-;—Xr;) ((b2 + B2 (287%) [F(b) F(B) + 2 G(b) G(B)]

+ 4bp (-2t 7?) [

%,(b) F,(B) + 6 Fy(b) Fa(B)])}
b ?

(177)

where

Fy(b) = F(b) + 2 G(b), F(b) =b?G(b) - Fy(b), Fy(b) = b*G(b) - 2 Fy(b)
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(2)

-To express the above results in terms of X (0) , one uses the relations
between <r2> and <r*> given previously. Hence, the above coefficients

may be rearranged as follows:

a? {&f) (28 7?) (2)

(3) (2)2r*R" (fic)

(-4)(2) ep iy | - @tz

a3 6,12> (2571.2) (2)

(3) (2)2 'R (hic) _(‘ “.é') (_:1*7) (_51;) <r24>] - (2)(255;4(?)(20134

1

Using these coefficients, equation (177) may be written as

(2)
(2) _ (2)*a' xX(0) 2
x(2) T (5)(3)°r? J pab [ gag (5

1 1 b(a+ b) + g(a+ B)
* [<b+3 * B-b> ¥ (b-B)(b+B)(a+B)]

x { 5(b*+ %) [F(b) F(8) + 2 G(b) G(B)]

2 [25m F®) +35.0) F28) + 26 By Fy@)] | (178

The B integrals are now evaluated using the results of Appendix C. Since the
second fraction involving b's and A's has been shown not to contribute, only
the first factor in equation (178) need be considered. Expanding, this quantity

becomes
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(2) _ 22a*x(0) (2)

X(2) B 3% (57%)

T pab pidg
x{ mOf (a+b)0f BT g By F®) F6) +2a(k) GE]

T bdb ~  pldp
+100f ot D) of B p) (5 D) [F(b) F(B) + 2 G(b) G(B)]

~ bdb o p*dg
- ° 6r (a+b) ({ (b+B8) (B - b) [Fm) F6)]

® bdb - gldp

Y bdb pdgp
- (4) (26) Of e b) ({ 575 (5= LFs(®) Fs(8] } . (179)

By using previous results and values, obtained in Appendix C, the above
expression reduces to

3.4 (2)
X(z)(Z) _ 28at X(0)

- (3°)(5) =
~ bdb 12 o 36 3) (52
x{ Ofm[5F(b)+10G(b)+? F ) + 35 F,(b) -L)Eg—) F3(b):|

.4 = [ra =
w1 : db [10 F(b) F' (b) +20 G(b) G (b) - = g(bz)z‘? o) _ sz(t;)’zsrz(b)

(180)
G +b

b4

(2) (26) Fy(b) Fy(b) ] }
- 4
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RN AN
il =

where

F.(b) = 1 | (ib%-3b*-6ib+6) elP +gb3+3b2_6ib-6) eiP
2 B L 2i 2i 1

5= 1 | @b’ -30b%-6ib+6) o' P (ib® + 3b% - 6ib - 6) &P ]
2(b) = 33| 21 - 21 y

The next term to be considered is given by the second group of terms in X(3)
defined by equation (129) and written here as

4(E, -E)?| = w —
2 HoR
x(3) @ =[ _—zyi;zh—co—:l of kdi of a, 7, léij-(Q)i({c‘)j} oK
ij

1 -1
X{(Ei-EO)[(Ei—EO)+/ﬁcx] * [(Ei—E0)+ﬁcx]z}
1 @) = = S o (2) = = =

(2) = = = ~—
+ qu (r1)t(r1)s(r1)i(r1)j>]}

(181)
(1)

The above terms are evaluated using the same procedure used to obtain X (3)
to shorten

except here one has no 6 functions in the sums over t and s,
the work. Before evaluating the terms in equation (181), one notes that the

first and last terms involving Héz) may be combined by using the symmetry

of the system. Interchanging the coordinates of atom I by the coordinates of
atom II within the matrix elements of these two terms and expanding the sums

over i,j and t,s, it can be shown that

?jl?ij é <Hq (1‘1)i(1‘2)t(1‘2)s(r2)j>

_ @ = o o E
- Loy é<Hq CAREICANCS I
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Hence, one needs to evaluate only two terms of equation (181). Rewriting
these terms yields

@) = = o o @) =) = o o
izjg)ijzxtxs[<ﬂq (ri)t(ri)i(rz)s(rz)j>_ @q (ri)i(rz)t(rz)s(rz)j>],

ts

(2)

Expanding the first term using the definition for Hq

, one gets

Yoo Nk k) (-1)™ (am) (L, + 1)1 <12 <r21;2+z>
R G (C R C SR

AL A m* AL A -m*
. Z <(1‘1)i(1‘1)tY].ﬂ (1)><(1°2)j(1‘z)SYLz (2)>

Y.
m  { (Ly+m)! (L - m)! (Ly - m)! (Ly+m)!} 72

(182)

Since the summation indices i,t,j,s go over 1,2, 3, one needs to evaluate only

IE (1} , because interchanging
1

six matrix elements of the form <(?1)i(?1) ¢ Y
i and t does not affect the result, Expressing the (;'31 components in terms

of Spherical Harmonics, one obtains the following relations:

<G:)1(?)1 Y§> = _4'1? «/’27—57l (‘5m,+2+ O, 2" % %, 0 ) oL 42 |
<(Bz(;32 Y;,n> - '74—1_1? «/_—1__5'7F <6m,+2+ 6m,-2+\/——§t6m,0> GL,+2 ’
<(?)3(?)3Y11i1* - 427r N g; ffg ®m, 0 %L, +2 :

<(—r’)1(?)2 Y§*> _41—7r «/—Z—i?T<6m, -2 6m,+2> 6L,+2 ’

Do

I
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—_ - m* 1 2T
<(r)1(r)3YL =27z N 15 g,ém,-i - 6m,+1) Op, +2 ’

— - m* i 2T
<(r)2(r)3YL > T o4q 15 <6m,—1+ 6m,+1>6L,+2 ) (183)
The significance of the above results is found in the GL +2 factor, which

applies to both of the (;’l)i and (;.z)j type terms. This type of matrix

element selects only the terms having L; = L, = 2 in the electrostatic inter-
action, and thus this term does not contribute to the dipole-quadrupole order
interaction (L;=1, Ly=2 or L;=2, L, =1). The reason for including it
here is that it is of the right order in powers of (r)i and has the same

general form as the other terms in equation (181). Since one is interested
in the dipole-guadrupole type interaction, further evaluation of

<Ho(12) (E) t(_f"i)i(;;)s(;’z)j> is postponed until quadrupole-quadrupole order

interactions are evaluated.

The next term to be considered is given by

(-1) %2 (4m) (L + 1)1 ottt ><£zLi+3>
Lyt Ly {@Li+ 1) L, + 1)} /-

Z ?ij Z Ke Ky Z

ij ts LyL, R

A m* A A A _m::z
<(1'1). Y (1)> <(1' ). () (Tp). Y (2)>
< i1y G At Mad T . (184)

i
m  {(Ly+m)! (L - m)! (Ly+ m)! (L, - m)! } 72

The matrix elements <(?1)i YIIIJII > have been evaluated and are given in
i

equation (143). They are proportional to & which in turn picks out

L1,+1’
the lowest L value and the corresponding range in the _sum over m in
equation (184). The other matrix product has three (rz)i components, each

of which can take on three values; hence, one needs to evaluate every combina-
tion. The terms required are as follows:
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<(—r’)1(;.)1(?)1 Y:zn*> = 'fffT E(ém,+3 - 6m,-3> '“é‘«/—}’zz (6m,+1 - 6m,-1> 0,43
““4%(—:51)f’?(ém,ﬂ“ém,-i)%z,n '

.8, 5> = [ (mrs* )~ S (oot * )]
+4—i1r(—é_)~/7—;_<6m,+1+6m,—1)6L2,+1 R

@, @,@, 77> = | fam (e o) =2 5 o] s
+117<%) «/1—;_ 6m,0 6Lz,+1 !

<(;.)1(—r‘)2(?)2 Y;f:*> = 'ﬁ [ a_ﬂs <6m,+3 - <5m,_a) * _é_ N (.3_)%)" <6m,+1 - 6m,_1)J 6L2,+3
+_411.r—< )< isl)(ém,n - 6m,—1) 6L2,+1 ’

<?’1(—;)2(;—)3 Y;: - Zi? N (7577[(77 <6m,+2 - 6111,-2) 6L2,+3 ’

4—;)1&—)3(;}3 Y;;n*> = _417_; <%)«/—2_"1_(6m,+1 - ém,—l) 6L2,+3
+ %(%) \/—%_<6m,+1 - 6m,—1) 8, +1 '

<—r32(;—)2(;.)2 Y:zn> - _ﬁ[f%<ém,+3 * 6m,-3) * % Y <6m,—1 * ém,+1)J6LZ,+3
* Ttr(-sé—) \/—-2_:?<6m,+1 * 6m,—1) O, +1 g

G S =Ty CRRTI I N P

o=

- . -m* 1 4i [T
<r)2(l‘)3(r)3YL2 > = ir <—?) Ty (6m’+1+ 6m’_1) 6L2,+3

w (EF fmotnn (185)
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R —

Analysis of the preceding matrix elements shows that L, can be either 1 or 3.
When referring to equation (184), one notes that the ferms corresponding to
dipole-quadrupole order are those for which I, = L, = 1. These terms give

results proportional to <r12> <r5f‘> as required; hence, setting L; =L, =1

in equation (184), one obtains the desired expression given by

-1) (am) (2)! <efP<rf
Z?ijz"t"s[( ) (4m) @)1 L <1:L>]

3
ts 3R

<<r1> v > B B, YT @)

(1+m)! (1—m)'

m=—1

_ 0 em @) G Z 9, Z K K

3R}

1 A m* AL A A -m*
X nZl (1+ m)! (1 - m)! <I‘1)1 Yi (1)> 41‘2)13(1‘2)8(1‘2)] Yi (2)>-

(186)

The term corresponding to L, =1, L, = 3 corresponds to quadrupole-
quadrupole order interactions and will be considered later. Evaluation of
equation (184) is rather involved since one needs to consider all the terms in
the sums over 1i,j,t,s and m. Since the expression (185) consists of 10

different matrix elements and there are 3 possible factors <(?1)i Yinq (1)> ,

one must consider 30 different products in equation (186). To show the
procedure used in evaluating these terms, consider the matrix product
corresponding to i=t=s=j=1 in equation (186) which is given by

<(/I\‘1)1 lenl (1)> <§2)1 (/;2)1(/%2)1 Yzm)lt (2)> - Ttr. Ni _23l <6m -1 6m +1> (_41?) (%) ZTH (6“‘ +1 7 6m -1>

_ _(3)em)
T (4m)é(5) (dm,—i - 6m,+1> (ém,+1 - 6m,-—1>
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This result is obtained using equations (143) and (185). Substituting these
values into equation (186), one obtains

. P (k, k,)(3) (2m)
(-1) (4m) (2) /.2 4 11 Y17
3R <1><r2>§ (1 +m)! (1 - m)! (4m)%(5) (3) (6m—1 - 6m,+1) (6m,+1 - 6m,-1)

el HED

(‘Sm,+1—6m)—1)2

(5) (3) R Py ey k) ; T U+m)'(1-m!
2 4
4‘1 ><r2> . 5.) [1 ('/‘\) (/\)
= 3) (5)R° 1% T
®)(5) t (187)

Performing this group of operations for each matrix product and defining this
product as (i) <t,s,j>, one obtains all the elements of equation (186). Once

all the terms are known, the sum over 1i,j,t,s may be performed and the
final result recorded. An alternate method is afforded by expanding all the
sums and then evaluating each product. This is not the shortest way since a

number of matrix products i) <t, é, j> prove to be identically zero, making

the expansion of the sums much easier. After evaluation of all these factors,
one finds that the following are nonzero elements.

K
W L 1,1> = ST ,

-
ERECITCSY

> <1,2,22 = — 5576’ ’
_-_1_ F<r2 <I‘4>_

<1> £1,3,3> = 3 _T?l}‘_%ﬁr] ’

2% ¢ pd
2> <2,2,2) = _; [%%é)_r;%] ,

2 4
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. (188)

With these results the sums over 1i,j,t,s, in equation (186) are now evaluated.

After combining the various x, components and (i/C\ ). unit vectors, cne
obtains!? t !

. 2> (o w0, 1 W) oG IR S ™%(2)
5 ll_ (Q)i(;(\)j} % xx, [( 1)(4«)(23!;3<r1><r2>] < > < %
ts

i (1+m)'(1—m)'

= 2{ Kkt P 1D L1, + 00 P 2D (2,2,2) + 1313 Py {B3D <38,3,3>
+ (kg ky P+ gy Pop+ d kg kg Ppo) <1 ,2,2)
+ (K3K3 ?11+K3 K3 ?22+ 2K1 K3 ?13-{_ 2K2 K3 ?23) <1> <1,3,3>

+ (kg Ky Paz+ kg Ky Pag+ 2 k1 K3 Prz+ 2 kp k3 Pag) (3D 1,1,3 }

1
2ut [ Cot>cetd z (189)
= -3 -—1—2—3—(3) 5) R (1 - 3 cos GK)

11, The Qi denote unit vector components; the parentheses have been left

out for convenience.
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where OK is defined through (Q)3 = cos OK, and GK is the angle between

% and the {-axis (Fig. 2). Including this result in equation (181) and
incorporating all previous simplifications, yields the following for equation
(181):

2) @38 x)® 7 b
X@ T = - Fawen [P [aaeer | (0) B r2ee]

(190)

Hence, one obtains the dipole-quadrupole interaction energy due to the mixed
terms. This equation is the counter part of equation (147); and by adding
these two equations one can obtain the interaction energy correction, accurate
to dipole-quadrupole orders, resulting from mixing of the field and electro-
static operators.

(2)

The last term in the group being congidered is X (4) , given by the

second set of terms of X(4) in equation (131):

2 (E - E* e A A Ay A
X(4)(2) = [—W:‘ fxdh' f k'dx! f aQ, f de % Z Z {6ij_(K)i(K)s}{6j1 _(K')j(K')!]

ij £s

e_i(ﬁi")i’ .
fic (k + k') [(E1 - Eg) +hc]T

+ 1 x 31+ Mj_'f'_)

[(Ei-E0)+hCK] [(Ei—E0)+hCK'] ; 2(E1—E0)£
o % w, w [Qﬁ () (70, ), > <, &
l thtq 1t‘q‘i‘j (I‘zl(rz)s>
G CIRCNEAIDY ;

e-i(E'-Tc")-ﬁ . L
* [(€, - Ep +Kew] | 2(E, -E) [(E, ~Eg *hex] * [2(E1—E0)+hc(x+x')]

< 1 N 1

(Ei_E0>+hCK (EI—E0)+¥10K'
1« — — —_— —_ —
x {-7 t}a ViVq [<(I‘1)t(1‘1)q(r1)i(l‘1)j><(rz)1(rz)s>

+ (@, @, O, T (T, @) ] ]

UL CHENEATR (191)
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The evaluation of the preceding factors is accomplished by following the

procedure outlined before. The matrix elements of interest are <(?)i(?)j >

gnd <(?)i(?)j (?) t(;’)s> . These have already been listed in equation (120).

The nonzero combinations are:

(@S =5 e, L Li= 123,

(D@, @, - (E)(E)>
@,@,@,@, > = (3)(5) &>

<(?)2(?)2(?)3(?)3> (%)(—-é—) SO (192)

I

Defining the expressions containing {6is - (Q)i({c\)s} by ?(i,j,{,s), one of

the sums that needs to be evaluated is given by

. -~ = Lrg>
iZj £?<1,J,1,s> %wt “g [<<r1>t<r1>q(r1>i<r1>j>—32— %. o

rz — — — —
+ S—‘LLs 6ij <(r2)t(r2)q(r2)1 (ry) S>

Since the second factor is obtained by an interchange of r; and r,;, only one
term needs to be evaluated in detail, Substituting for w ¢ the quantity that

needs to be calculated (defining the matrix element as {t,q,i,j>) is given by
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&Y, V2L 6y

ij £s

!
X z (fctxq+ thc

+2:ct K;) {t,q,1,j> . ' (193)
tgq

1
q

By using the results given by equation (192), the factor containing « ¢ Kq
becomes

(2)&ED(E) (5) & z {9,050 [2rn+ 7]+ 222,58 [0+ 5n ]
+ 9(3,8,8,8) [2k5k3+r-k |+ [ 9(1,2,8,8) + 221,55 | [ 2kix, ]
+ [2t,3,5,8 + 23,1,5,8) ] [2 Ky x5 ]
+ [92.8,5,5 + 9263,2,5,5] [264 ] ’

Using the definition for ¥ (i,j,£,s) and summing over s, the above result
transforms into

() (ENE) etd> e wreosto) (194)

The term containing x| K:l in equation (193) gives the same result; only x?

t
is replaced by x'®. When the last factor that contains ey K('l in equation (193)

is expanded, it gives the following result:

(3) (=) (3) ($) &> | w0 [2nds 7]
+ 9(2,2,s,s) [2 Ky K§+T<'-T<":| + 9(3,3,s,s) [2 Ks K3+E'~T<":|
+ |: ?(1,2,s,8) + ?(2,1,5,5)] [rq K; + Ky x;]
+[ 201,3,8,8) + 93, 1,5,8) | [ ke nd+ g |

+[ ?2,3,s,s) + ?(3,2,S,S)J[K2K;;+K3K;] } .
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By using the definitions for ? (i,j,£,s) and summing over s, the above
expression reduces to

() & ($)(3) (3) 6> xweeoer . o)

Collecting these terms, the sums in equation (193) become

N4
%)2(—%12—'@2 + K,z) (1+ cos? @) + 4k k' cos® © } . (196)

Analyzing the expression in equation (193) indicates that when w ¢ is replaced

by \A only the sign of 2 « ¢ K:l changes; hence, only the quantity in equation
(195) changes sign. By using these results to evaluate the second term in the
sums of equation (191) and performing integrations as before as well as using

the results of equation (176), equation (194) reduces to

(2

)
(2)  42°X(0)
X (4) = —W f bdb deB

v {2a + b) 1 + 1
a(a+b)? \ b+p B-b

a(b+8) +B8(a+8)+b(a+h) }

Ta(@a+b)(a+p) (b+p)(b-p)

x{ 0+ 62 [ F(b) F(B) +2 G(b) G(B) ]

Conp [mm@(ﬁ)(zg)n(m r;(8) ] } , (197)
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The B integrals are evaluated using previous results and values
obtained in Appendix C. Since the second fraction containing b and g does
not contribute to the integral over B, only the first term needs to be evaluated.
To obtain the B8 integrals in equation (197), one proceeds as follows: Take
the first term, given by

b 1 1
fbdbfgdﬁ[af::b)z }(bw + B_b) (b + g%) [F(b) F(B) +2G(b) G(p)]

[}

b®db (2a + b)
- Wéf b’ a (a+b)?

[F(b) +2 G(b)]

% 4
v 2in | btdb (22 + b)

2 (2 D) [Fo) ¥ (b) + 2 Go) GT (1) , (198)

0

and the second integral of equation (197), given by

2 b 1 1
[bdb [pgdp [;(;:b))z] ( ETT TR )[_z[ffz(b) F,(8) + 6 Fy(b) Fg(ﬁ)]]

8 bdb b) |
={ B0n Ly [;i;;)z)d[?z(b)—3F3(b)]

- (4)2(i7r) szdb [__23_12_5 [‘fz(b)?;(b) + 6 F3(b) F;L(b)] , ; (199)

a(a+ b)*“ |

combine these terms and obtain the following expression for equation (197):
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5 (2)
X(4)(2) =|: _42. X(O) ]

(3)°(58)
~ b(2a+ b) 12 36
o] st (s - )

0

+61f b*(2a + b) db{ F (b) F+(b) + 2 G(b) G-'-(]O)-ﬂr (b){:; )

a(a+ b)

+
6 F3(bli2 Fz (b) ) (200)

Further simplification is possible for each of the X (i) (2) terms, by applying
the definitions for the various functions used so far. This may be seen by
recalling that these functions are defined in terms of F(b) and G(b), used
throughout this discussion, For instance ,(b) =b? G(b) - 2 F3(b) ,

F(o) =b%* G(b) - Fs(b) , ... etc.

Dipole-Quadrupole Interaction Energy
. (2)

In the previous discussion, each of the elements X (j) is given in
terms of an integral over b (b =«R) and with coefficients proportional to

X(0) (2) . Combining the expressions in equations (168), (172), (180), (190),
and (200), one obtains the dipole-quadrupole order correction to the interaction

energy AEd q’ given by
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AE

_ (2) 2)%(a)3 6
= X(0) [1--(3_;575(35—};‘[ 4fbdb[(F+2G)+—bz- (F-4TFy)

d-q

+8i [ btdb {(FF++2GG+) ‘_162 (?:F‘+4F3F;)”

bdb 1
_[2af arb 5(F+2G)+—57[125F+36?2-(3)(52) F3]}

4
+4aif (Zfl!’)) ’5(FF++2GG+)—E15 2FF '+3?2?;+26F3FI)]]

4
+[zf ——,a(';f'i) '3(F+2G)”

2
+[3a2fﬂ%%:—?)—gb—{(}*+zc)+—lb,- ($, -3 Fy)

4
+6a?i [ Lﬁaﬂ’lzg_@_[(yp++2ec+) _7:7 (?z?;+6F3F-;)‘] ’]

a(a+b) (201)

By writing the above equation!? as a sum of terms, one can see that the result
reduces to the electrostatic interaction case when the radiation field is omitted.

’

+2ib
e .

2
In addition, each ferm X(i)( ) i=1, 2, 3, 4, is separated into two integrals

over exponentials eﬂb and The reason for doing this may be seen by
referring to the dipole-dipole approximation, where, in equations (162) and

2
(163), one notes that only the integrals over et ib contribute to the final
result given in equation (164). The integrals over eilb and portions of the

(1)

21ib
results from the integrals over Siah combine to cancel X (0) . One
would expect the same behavior for higher approximations, so the results
given by equation (200) are already in a suitable form for further analysis.

QUADRUPOLE-QUADRUPOLE APPROXIMATIONS

Introduction

The presentation of the quadrupole-quadrupole order approximations
is much more condensed than previous discussions; however, all the steps

12, 1In the above expression the explicit functional dependence is omitted.
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necessary to obtain a given result are either mentioned explicitly or the inter-
mediate results are given. To have a systematic presentation, the procedure
followed here parallels that used in the immediately preceding discussion.

The quadrupole-quadrupole order interaction energy is given by

AE = X(0) (3) + X (1) (3) (3) + X (3) (3) +X(4)(3) , (202)

+ X (2)

where the various X (j) (1) , j> 0, elements are given by the last group of
terms in equations (123), (127), (129), and (131). The electrostatic

interaction energy X(0) (3) is obtained from equation (85) by letting
Li=5L,=2;M=-2, -1, 0, +1, +2; and Ly=1, Ly=3; L; =3, L, = 1;
M= -1, 0, +1. Hence substituting these values in equation (85), one obtains

2
4 ' 4 4 +2
x(0) @ _ [ 04 {@r) PO 5 1

2(E, - Ei)R1°(5)(5) mly (2-m)I2+m)!I(2-m)!(2+m)!

2 2
Ll et t@r) P>y | (0 @) &f>E
2(E0—E1)R1°(3)(7) 2(EO—E1)R1°(7)(3)

+1
1
x ), (1-m)'(1+m)! (3-mt(3+m!
= . . ' .

T | L DG+ GG ]

(E1 - EO)R

This result may be expressed in terms of <r14> éé"} by using the following
relations, [see equation (86)]:

R RGP O NINR COT- JREDRE
Thus, X(0) (3) may be written as
4 4
x(0) @ = _6) (1) <rf><rf _ (203)

2 ~ 10
3 (E1 EO)R
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The next term to be evaluated is given by the last group of elements
in equation (123):

. — —¢’ i —>—>' '—P

(@ E) @@= E)E) (@ )]
X { (k% + k") + 4k k' (K2 + k') cos O+ 4 k2 k" cos? © } . (204)

The coefficient of this term may be expressed in terms of <r{1\)<r24 > by

using the relations previously obtained. Combining the r matrix elements,
and substituting for (1/2pc?), one obtains

T (2)°(3)4(m)¥(5) hic)®

[ (Ey - E)? et <&eg> ]

Again substituting for « and k' and using the above coefficient, as well as

(3)

expressing the quantities in terms of a and X(0) , equation (204) becomes

(3)
(3) _| 22a%x(0) gdg
X '[(7)(3)2(5)%2 }f bdb [

2
x’ (b?+ 6%  [F(b) F(B) + 2 G(b) G(B)]

L5 (b) F6) + 4 Fy(0) Fy(6)]
bs

~ 2bB (b* + %)

+ bt gl [ {F2(b) Fy(8) + 2 G(b) G(B) )

1
g2 {£b) £8) + 12 Fy(b) F4(B) + 24 Fy(b) Fg(m}] } ,
(205)
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w

where
F,(b) = F(b) + G(b), f(b) = b? Fy(b) - 8 F3(b), F4(b) = b? G(b) - 4 F3(b)

The g integrals are pefformed with the aid of Appendix C. The results for
each of the above integrals are as follows, (after the B integrations, the
explicit functional dependence is omitted):

1 2
f bdbedB( y )(b2+/32) [F(b) F(B) + 2 G(b) G(B) ]

©0 o0
= n [ Wab{F+2G) +4ir [ Bab {FF +26G" ,
] 0

[ bdb [ pdg (biﬁ >[b3 (b2+52)][5(b) 5 (B) +sﬁFg(b) F3(8) ]

e}

=—37bedb {?-—41‘?3}+17be4db[?.?-+4:F3F;-} )
0 0

2 n2
[ bab | B—‘i&b—ﬁff—)[[mb) Fy(8) + 2 G(b) ()]

+3§1§z [ £(b) £(8) + 12 Fy(b) F4(B) + 24 Fy(b) Fs(B)]}
= _241r0f —dgk—’ {t+6 F, - 3T} +i1r0f bzdb{b4F2F;“+2b4GG+

+ -
+ff +12 5, F, +24F3F:} .

Using the above integrals, the expression in equation (205) becomes
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(3) _ 2208 x(0) ¥
x ‘[ (7) (3)2(5)

X fdbl:b3(F+2G)+12b(ff—4F3) -4—5 (f+63"4—3F3)]
0

o0

+ 4i fdb[bs(F F +2GG) -b(FF + 4 F; Fy)
0

6
+1°2— (F, Fy +2GG)

b - - +
+_2_ (ff +12?4?4+24F3F3) . (206)

In the above expression, the explicit functional dependence in the various
functions has been omitted. This will be done in the future after doing the g

integrations. Comparison of equation (206) to the expression for X (1) (2)
given in equation (172) shows the increased complexity in the higher approxi-

mations, even for X (1) (1) which is the simplest of the electromagnetic

interaction terms.

The next term to be considered is obtained from the last group of
elements in equation (127); it is given by

2 (E, -E )2 - —
3) _ 1 0 K dg! A A A Ay Ay A A,
X(2) [ - Jf L[S ‘IL] ORI ORI ERINCEY

- 21;1;1031’1

Si(%)-R +i(k+e') - R
el(KK)R el(K+K)R :,

x R [, - ;) +hcq+ (1) [(By - Eg) o]

| & é %1{(%) (5) o oy, 94 9 o @@ G Ey >
. (—é‘) <1'12>wt w0 bys 9y wh<<§;)q<§;>h<?;)i(§§)j >
+ () @y 0g 0 @ <G @) (@) o), Gy T, >} }
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(kxR
&icel(KK) R

[(E1 - E,) +Hcx :”:(E1 -E,) +hcn':|

ts

42 3OO ED e @@, >

<—)< > Vi Vs ts q Vh <(;;)q(;;)h(—i‘;)i(?2)j>
+(_é')vtvsquh<(?z)t(?z)S(;‘;)q(};)h(;‘;)i(z';)j>}:l S

To evaluate the terms in equation (207), one needs to consider three
different types of sums, as given in the above expression. Since the evaluation
of these sums is very involved, only the 1ntermed1ate results are given in each
case. Denoting the sums over unit vectors (K) by %(i,j), the first sum
to be considered is

2 — — — —
(ziz)(—L-<§>> % P9 ) ), by e e e @y ) @) F) @)D

ts qh

Using the matrix values for <(?1)t(?1) s (;;)q(;;)h> obtained before, the

expansion over t, s, q, and h is simplified considerably. Furthermore, the
61' function allows one to collapse the sum over i,j. After this is done, the

above sum reduces to
) ) (Ga)
AV, y(AY (L 4 2 12 v .2 12
(24)< 3 ) 3 5<r1> (3) [(K + k') + 4Kk k' (kK“+ «') cos ©
+ 4 k% k"% cos? e] (1+cos’@) . (208)
The next sum to be evaluated is

( )(<r ) Z 9, J)Z Z 5, & ©q “p ) Ty, (o), (r2>]>
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Summing over i, first, and then over i, j, q, h, the above expression
becomes

4

(4) (3)

<I‘12_><r4> 2 121 2 2 L 2 ,
(4)(3)(33(5) [(K + k") (14 cos°O) + 2k k' (k“+ k') (cos © + 3 cos® Q)

+ 8 k% k'? cos? e] . (209)

Evaluation of the last sum in equation (207), given by

(£) Z D R G R R NI N CANCS R

ts gh

is carried out by first replacing w and w' with « and «' in the above
expression, and then performing the multiplications indicated. Five different
sets of (K}i, (k') . combinations are obtained; for instance, one of these sets

having no primed components is (k ¢ KS Kq Kh) . The other groups have various
combinations of (k t) and (K;;) . The matrix elements over (?)i are

evaluated in the same manner as those for dipole-quadrupole approximations;
the nonzero combinations are as follows:

6
(@, @,@,@,@,@,> = <=2, i=1,2,5

e S R S SN € o o L
CO@O@H @ @@, > =y, bi=te sie)

N Y.
@@, @@ ,@,@, > = Grormy, bbb oLz izt

(210)
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Using these results, the term being considered reduces to

( )Z P(1,3) ). Y, <t,s,q,h,1,3>

ts gh

1 I 1 | ]
s ]+ + + +4
{xtfcsx K Ktlf 6 K KSK k! 4Ktl€ Kk k! thcslc K ‘

— <r6> 2 9.2 2 2 42 ) A
= 8)(3) (5) (1) l(ic + k') (1 + cos® ©) + 4 k° k' (-cos“ 6+ 3 cos* 9)

+ 8k k' (K2+ k") cos® o ] (211)

Analysis of equation (211) shows that when the sums containing (Vi)

in equation (207) are evaluated, a sign change occurs in those terms containing
cos © or cos® ©. Thus, using previous results, one notes that the two groups

of terms in equation (207) combine after the integrations over dQ are
performed because of a sign change introduced in these terms in these operations.
[See equation (176).] Thus, the equivalent of equation (207) may be written as

2(E, - E) L =
x(2) ¥ =[ —24?—3—-} [ rae [ e [do [ da e ikl R

1 1
x{ (k + k") [(E1 - EO‘) +‘l‘1cx:| " (¢ + k") [(Ei - EO) +flcx':|

A
* |:(E1 - EO) +4’10K:| [fEl - EO) +ohcr<':|

xl [ {ef>Led

(24) (3) (5) :I“: (k% + K'Z)2+4K k' (k2 + k%) cos © + 4 k' k' cosg? e] x (1 + cos? 9)}

<I‘2><I‘4> 2 2,2 2 vog2 2 3
( )[ (3) (3) (5) [(x + k') (L+cos*O)+ 2k« (k“+ k') (cos © + 3 cos® Q)
+8 k2 k' cost e]

<8

. A 2 2,2 2 2 42 2 4
+ (8) (3) (5) (1) [(x + k') (1+ cos®“ @) + 4 k° k"™ (-cos®* ©+ 3 cos* 9)
+ 8k k' (Kz+ k™) cos® e] } s
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where one combines the terms in equation (207) before the integrations over
dQ are performed. An additional simplification to equation (207) is accom-

plished by expressing (u) in terms of < r?> and the resulting factors in
terms of <r14> <r24> . After performing these modifications, expressing «
and «' interms of b and B, and listing the coefficient in terms of a

(3)

and X (0) , the preceding equation becomes

(3) _ at X(0) ~i(k+x') R
X(2) = -G 5 Of bdb (jf Bdp f dQK f dQK, e

1 1, 1 . 1
*1o+8 \a+b ~ a+p (a+b)(a+p)
X { 5 (b% + 82)° (1 + cos? ©) + 8bB(b? + p%) (cos © + 4 cos® ©)

-4 b?B% (cos? @ - 11 cos? ) } . (212)

By performing the integrations over d2 the above expression simplifies to

@ = =
(3) _ 22a*x(0) Bdg 1 1 b{a+hb) +B(a+p)
X0 = -G @@ [P Gen |5 H  Em o pbrh @ f)

x{ 5(b2+ 847 [F(b) F(B) +2G(b) G(B)]

abp(t s £ [bG(b)BG(B) o 4 L52(0) F5(8) + 6 Fy(b) Fz(@)]]
bA (213)

1 LE) £(B) + 12 T4 (b) T, (B) + 24 Fy(b) FJ(BLL”
b2/32 .

- 2 bPgt [Fnb) Fy(8) + 2 G(b) G(B) -

Since the second fraction involving b and B does not contribute to the g
integral, one needs only consider the following B integrals:
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i i i 2
a5 po (k) (st +555) o 505015000

* Bdb 7 Hab + +
=1r[{ 7y {F+2G}+411r0f (a+b){FF +2G6G6"} ,
° s 1 1 1 2. 2 4 F,(b) F5(3) + 24 F3(b) Fi(g)
[{ bdb J Bdﬁ<a+b) (b+ﬁ +B—b) [ba (b +p)]x=bG(b) BG(g) + 55 l

< bdb . 7 bldb + 4%,F; . 24 Fy o
=—(8)(31r)6f @+h) {?2-3F3}+21r1g. (a+b){GG = + X ,

[ vav [ pas [ (37 +55w) {4 (o mam + 2000 c0))

- 11 [£(b) £(B) + 12 Fy (b) Fo(B) + 24 F5(b) Fy(p)] ]

°° db ) < ¥ db
= (2)(11)(12)1\'0f barD) {f+6F-3F;} +”f0f (a+h

+ +
'(F2F2+2GG)

-%} (Ef + 12?4?;+24F3F;)]

Incorporating these results into equation (213), one gets

(3) _ (2)? at x(0) ¥
() T 3BT

T db )
8 f (a+b){5’03(F+2G)+(4)(8)(3)b(f2—3F3)

S2@UNEY ¢, 63, Fg)}

. ° bsdb + 4+
+ i f m{(s)@) (FF +2GG)

- +
+ 45,5 24 F3 F
- (4)(2) (bzGG + =5t 3)

-2<[F2 F:+2GG+]

_i)i[ ff +12 F, F, + 24 Fy F:;])} . (214)
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Using the definitions for the various functions, one notes that the preceding
result is separated into two terms proportional to e:Elb and ei2 ib
previously.

, as done

The next term to be evaluated is X (3) (3) . This term consists of the
last group of elements in equation (129) and the terms of quadrupole-
quadrupole order in the second group of this equation. [See equations (182)
and (183).] The reasons for including all these terms here were explained

in the preceding discussion. Collecting these terms, X(3) (3) is given by

2
4 (E1 - EO)

x(3) ¥ =[ -W] [ owde [ aa 12) [6ij-(f<‘)i(Q)j le_iK-R

1 -1
X - + T ;
{ (1:1-130) [(Ei-E0)+ﬁcK:| [(El-E0)+‘hc1<:|
2 - —- - — 2) - . . .
x{ A [<Hq CIRCANCINCIN SR C I AREARCIN I >}

1
+EL_ %\élz;/lxt'(sxl “n

2) —~ o - o 2) = o~ o e e .
X[ <H(; ) (rl)i(rz)t(rz)s(rz)l (rz)h(rz)j>-4 é{é ) (ri)t(r1)i(1‘2)s(1‘z)l (rz)h(l‘z)j>
2) > e - e 2) = = o e e
B G CRCARCARCIN R SR CI CINCIREANCARCAREAIN
+<H(2) T, () (T, @), (1) ('r’>>
q 1 t 1 s 1 1 1 h 1 i‘t2 j - (215)

Expressing the elements involving (fc\)i as ?ij , the sums needed in

the above equation are evaluated as follows: The first term to be considered

give st

13. Using equation (183) one picks out only the terms for which I =L, = 2.
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@ = o &
g é"t"s<ﬂq 0,6 T

= E ?ij Z [(_1)25(,4:3 (4!)] <1'14><1'24>

ij ts

+2 . .
1 A A m* A A -m’

m=-2

ax? {eidlrd >

T T (3)(4)(5)*R°

(216)

PN
-

[3—30coszo + 35 cost ¢
K K

where the following nonzero matrix elements have been used:

(N @@, @,@; > - ( )(%3242),1:1,2,

o 4 4
<H(§2) (r)i(r)i(r)i(r)i> (4 {r ><r >)

-3
2

H

(2) =~ — - — ERYERS: 4><r4> o .
<Hq (r)i(r)j(r)i(r)j> <12 < i,j=1,2, i#j ,
e — — — 4
<H(2)(r).(r).(r).(r).> <1_12 (ﬁ_12>_5<_1:L> , i,i=1,2, i#j ,
q i
<Hq @) @, @,

%><_4_§y;‘;>R_5<rz“2> , 4,i=1,3, i#] ,

e e . 2 4
<H(§2) (r)i(r)i(r)j(r)j> 1—‘%2)(1—’:}—5@9—) , 1,j=1,3, i#j ,
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(2) =~ = = = N\ _ 4 4<r122§r24>) L L
<Hq (r)i(r)j(r)i(r)j>-_- (- 12)( TR , 1,i=2,3, i#j ,
2) = =~ = \_ [ 4\ [(elet><ed ) L L
<Hq (r)i(r)i(r)j(r)j>— <— 12)<—5’rer‘Z , 1,j=2,3, i#j ,

(217)

The remainder of the matrb_(__ elements are obtained by interchanging t and i
in (ry) and j and s in (ry). Recall that the evaluation of each element in
equation (217) follows the same path as that followed to obtain equation (187).

The next sum to be evaluated gives

(2) = =\ = o
- % ?ij é Ky Ks<Hq (ri)t(ri)s(ri)i(rz)j>

1 8 2
=% % Tk (=1)” (4m) (4)! <1'11/><r2>
j v ts ()] 2

-ii oo o, v™ apdy Y@ >

Y
m=- {1+ m)r(-m!(3+m!E-mt} "

(218)

The above results are obtained by taking L; = 3, L, =1 in the expression for
2
H( ). The choice of L values is made using the results of equation (185).

The various matrix products needed to evaluate equation (218), [defining
quantities as in equation (188)] are:

6 2
4,1, K1) = _1—(%?—7%%{?— = <2,2,2> <2

6 2

Il

<1,2,2> <15

3

_ ef>let >
<1,3,3> 1> = 3 —(—5‘;—(7—)—1%5— = {2,3,3> <2> ,
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6 2
{3,3,3> <3> = __g_ ef> &>

(5) (HR® .’
6 2
<1,1,3> &3> = {;-1%%%%§%@?L = <2,2,3> <3> . (219)

Using these results equation (218) becomes

@) . - -
) izj 7, tzs KtKS<Hq (ri)t(ri)s(ri)i(rz)j>

- 1-36cos?9 + 23 costo ,
3 (3)(7) R ( cos GK cos K)

:
2 [<rf><r§>

AR GG

(3)%(5)* R®

1 - 36 cos29K + 23 cos46K } , (220)

where the last step is obtained by substituting for {r*> and <{r? ) interms

of <r'D.

The next sum to be considered is given by

25 %5 ) %s;thKS kg K (6) <Hq (ri)t(ri)s(r1)i(r2)q(r2)h(r2)j>

L L+3 L,+3
1 (4)%unu+hﬂ<ni><§f D
= — ?.. Ky K K Ky e

4 21:“ ij ;2‘ Z

_ ; -
L, RO leu+1@EL,+1n} /

<<r1> (o, G, YT, (1>> <(r2) (), (B ¥ (z)>

“M+m(h—m)ﬂQIMWh+m)}

(221)

The matrix elements required to evaluate the above sum have been evaluated
and are listed in equation (220)., The quadrupole-quadrupole order terms are
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obtained by choosing only the terms for which L; = L, =1 in equation (221).
Letting

2) = oy o . .
<Hq([) (rnt(rns(ri)i(rz)l<r2>h(r2>j>E {t,s,i><Lhi>

the nonzero matrix products corresponding to equation (221) are as follows:

Lo <y - (2) (82 ) L oo canes

(3)(5) R

{1,1,1> <1,2,2> = %>(<r4><r4>) = <1,1,1> <1,3,3>

WL
( >( (3) (5) R3 ) = <1,2,2> <1,3,3>

(--%)( )(%‘:?5?"}{ >= <1,1,3> <2,2,3>

e[

1,2,2> 1,2,2>

<1,1,3> <1,1,3>

4 4
£2,2,2> <£1,1,2> = —é—)(ﬁ%—?—) = <€2,2,2> (2,3,3> )
4
o @ - (2)(2) (D) - ano o |

{3,3,3> £3,3,3> =

(
(
<_§ < (3)(5)R ) ’

_2 (-ELLL—) = <3,38,3><2,2,3> ,

{3,3,3> <1,1,3> 3) (5) R

(-
o ans - (2 HGRER)
(

)
_;_) %)(M) = <1,1,2> €2,3,3>

(191,2> <1’152> = (3) (5) R3

(222)
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Using these results, the sums in equation (221) are evaluated and the results

are given by

(4) % % ;slzh “t*s “q *n @q (ri)t(ri)s(rl)i(rz)l(rz)h(rz)j>

Kt e <> 2
oy (3)12(5)2 =3 (1 - 3cos‘ 6 ) . (223)

This result is in itself interesting, in that after numerous operations on the
terms in the sums, the final result can be expressed in terms of

(Q)g(llc\):; = cos? GK In the evaluation of X(3) (3) the angle GK plays the

same role as © in the terms having both « and «'.

The next sum to be evaluated is

_<i) Z E Z Ky Ko K K < (2 )(ri) (ri) (Ty) (1'2) (rz) (T3) >

ij ts lh

The sum obtained from this expression by replacing (_1-'.1) and (—r;) has the
same value and need not be evaluated. Substituting for H((lz) in this

expression, one finds that matrix elements of the form

<<r1) @, Y2 (1)> and <r2> (B, ) (Ba), Y] (2)> ,

need to be evaluated. The former group has already been evaluated and is
listed in equation (183). This group of terms requires that Ly = 2 for
nonzero results. Thus, the quadrupole-quadrupole order terms associated

with this sum require that L, = 0 to get results proportional to <rf> <r24> .

With these restrictions, one notes that sums of this type do not contribute to
the quadrupole-quadrupole order results.
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The last two sums that need to be evaluated are of the form

24 Z ij %‘é%" K Ka Kh<H(2) (_I_")-(_I—") (;'.) (-I_'b)l(;'.)h(.r_'.)j>, the other
(2)

belng obtained by interchanging (ri) and (rz) Substituting for Hq in
terms of r; and r,, one notes that matrix elements of the form

<(I~])iYE-<(1)> and <(};)t(}§)s(¥~’2)l(}’z)h(i’z)jYI‘;n"‘ (2)> need to be

considered. The former set is given by equation (143), where one sees that
only the value I, =1 gives nonzero results. To quadrupole-quadrupole orders,
then, L, can be only unity. Hence, this sum reduces to

<§) E ?ij Z z kKo Ko Ky <Hq (ri)i(rz)t(rz)s(rZ)l(rZ)h(rz)j >

ij ts lh

-1) (4m) (21) SrfD<ef D
=< 1 )[(1)(4 3])33 17 :I Z ?1] Z Z KtKSKth

24 ij ts gh

+1 Lo, ¥ ) B G () () B0 Y] (2)>

(1 - m)!? (1+m)'

m——1
(224)

The matrix elements in this equation are eva_l’uated in the same manner as
before; except now, the substitution of the (r)i components requires the use

of up to fifth-order Spherical Harmonics, These functions may be obtained
using the definitions for Ylnfl(e, ¢) given in equation (21). The nonzero

matrix products corresponding to equation (224) are as follows:
Lef>Lrf>
T T
<1 1,1,1,1,1) = (1) |22 = & 2,2,2,2,2 ,
> < > <><(3)(7)R> @> < >

2 6
o <winen - (1) KRR - w aiin
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R S
S B

>(<r2> r6>) = (1> <1,3,3,3,3>

(3) (1) R

(D ERR) - @ anans |
( (%) = 2> £2,3,3,3,3) ,

{1) <1,2,2,2,2>
<1> {1,2,2,3,3>

<2> <1,1,1,1,2>

(2% £2,2,2,8,3>

2> <1,1,2,2,2>
ef DL
- (G
6
()R - > annan

) = <3> <232’3’3,3> s

<{3> <3,3,3,3,3)
<3> <1,1,1,1,3>

<3 <1,1,3,3,3>
(225)

3> <1,1,2,2,3>

Using these results, the sums in equation (224) combine to give
k ok x k CHEP T (T @) (7o), Ty (T
s q h q S AR AR RS Ths R

(24 Z ij ts 1n t
(226)

ij

= 4 <r14><r24>,<4 ) s
= - (24)(3)2(5)2 R 1+ 9 cos BK - 12 cos 9:{

where the last results is obtained by replacing <x®><xr?> in terms of

< 4> <r4>. The sum obtained by interchanging (—r:) and (};) in equation
Substituting these results in

(224) is the same as in equation (226),.
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equation (215), letting kR = b, and factoring common factdrs, this equation
becomes

4 (E, -E_ )2 4 4
(3) _ 1 0 <1' ><I‘ >
X3 =\ -—FrEeT |- mieie)

-ik-R 1 -1
x [ bdb [ do e {a(a+b)+(a+b)2}
x{ (2)2(3)2 b?[ 3 - 30 cos? 6 + 35 cos* 9}{]
+(3) (4)2b? [ 1 - 36 cos? 6 + 23 cos* 9K]+ 3bt [ 1 - 3 cos? oK]

+(2)2bt [1+9cos?g - 12 costo ]
K K

_ a® X(O)( ) b
ECICHBICIE fbdb[a(a+b)"‘

~ib
1bcos "x{ (3) (2)2b? [13 - 234 cos? 6 + 197 cos? em]

X f dQK e
+ b [7 + 27 cos? 9K— 48 cos* OK]’ . (227)

Using the results of Appendix B to perform the integrations over dQ, the
above integrals reduce to

[ de e 1PCOS O 13 _ 234 cos? 6 + 197 cos? 6]
K K K

= f da_ e ibcos 6, [ 13(1 - 3 cos? 6.)- 195 (cos® 0.~ cos* 6) + 2 cos* QK']

= l(iS)(—237r) (Fg) + (195) (2%7) (-ﬁf-) + (2) Lﬂfjﬁﬂ } ,

bZ
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[ e e~1PCOS O L 27 cos? 6 ~ 48 cos* eK]

= [ (7) (-27) (F3) - (48) (2°m) —%é— } :

Using the above results, equation (227) becomes

@3) _ 28x@0® i b2db

X(3) (7)(8) (5)°r J a(a+b)*

X { (3) (2)% b? [(13) Fy - 195—5;5— _if-l(;'%}

+ bt [7 Fj + 48 —‘;f%—] } . (228)

The last term to be evaluated is given by the last group of terms in
equation (218), and is given here by

X (4) =

< ) 2(E -E )‘
——4—."477‘— deK f k'dk! fdfl fdQK,

x 5% [ - (f?)i(?c)s}léj,Z - (@&, ]

ij £s

-i(k+x") R 1 2 (E, -E ) +he (k*+«")
X[ fic (x + ') { [(El -E,) +hc,<]2 * _[2151' - }i:b) +ﬁc‘]T(El - Ey) +hcx':| |:2(E1 Z EO)] }
x{ﬁ é Y, @y ©g @y @ [<<r1> NN CREIRCIY NI
+ 6 @, @ 0, >E T (7, () >
+ @) E0 > E T (R, (o) ) 1<?;>s>] }

e-i(?-}")-i' { s
+
[(El- E0)+ncx] 2(E1-E0)[(E1—E0)+ﬁcx]

2 (E1 - EO) +he (k + ')
* [2 (E1 - Ey) +a§c'(E+4K"):|7 [(E, —Eg) + Kok [(B - E) +Hox ]
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i
X{g IR [<(r1> ANANAREINCANY I CII
+6 (@)@ ), o) S, G @, ) >
+<(f§)16’1)j><<?2)t<?2>q<?z>h&;>f<?z>£(E>S>J }] :

The evaluation of this equation requires evaluation of six different sums
involving w. and Vi Later on, one will see that it is necessary to do only

(229)

the sums involving w,. Taking the first sum, given by

YL et (57) BT opeq o op (0G0 E0, G 5, G D> E, G, >
q

ij £s

one evaluates it by using the results of equations (120) and (210), where the
various matrix elements needed have already been listed. The results are as

follows:

(7)(3) & (F)(F)(F) ED{@wchascoste

+ 6 (K2 x’z) (1- cos® © + 6 cos? 6)

+(4)(3)(2) (k' + kP k) cos O | .
(230)
The listing of terms reflects the expansion of (w w wh w f) into various
(K)i and (;c')j components, as was explicitly 1nd10ated in equation (211). The

sum obtained by interchanging (?1) and (_r_;) yields the same results and need
not be evaluated. The next sum to be evaluated is given by

Y Y Pa,i4,s) (2—1) Y0 W Wy @y @ [ <r1) (1) (r1) ey §<r2) (T2 (ty) (rz) >J

i,j 4,8 t,q hf

The evaluation of this term is accomplished using the results given in equation
(175) for the matrix elements. Since t, q, h, and f appear in different
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matrix elements, one must be careful when performing the expansions and
contractions of the various (x )i and (K')j components. In addition, since

i,j,£, and s are coupled in both matrix elements and the polarization function
P(i,j,2,s), the sums are not straightforward. Applying the various techniques
developed in evaluating previous sums of this type, one finally obtains the
following result for this sum:

(F)(E) (L) D) (L) D { v+t +costo)
+ 2%k (1+ cos® o)

+4 k2K (1 -3cos? O+ 4 cos? 9)

+ 4 (k3k'+ k%K) (2 cos® O) }

(231)

Analysis of the results in equations (230) and (231) shows that, when the next
group of sums in equation (229), containing (vt) instead of (wt) is evaluated,

the elements undergoing a sign change correspond to terms containing cos® O.
This property allows one to combine the two groups of terms in equation (229)
because the integrations over d} of cos © and cos® © give an additional sign
change which offsets the previous variation in sign of the terms in question. It

is of interest to note that while this feature of the calculations appears throughout
the various approximations considered, it is necessary to keep the various terms
separated until the final sums and integrations over dQ are carried out. In

all previous cases this has been done, except in equation (212), where the
various terms in equation (207) were combined before performing the integrations
over dQ2. This will also be done here to shorten the discussion. Hence,
incorporating the results given in equations (230) and (231), and combining

the various elements in equation (229), one obtains
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(3) 2(E - E)"* bdb g ~i(gint) R
X(4) = - AR J S5 [ [a,e

RS i, _2at+(brp)
XY @We)’(b+8) | @+ b)2 " Za(a+tb)(a+p)

R3 1 2a+ (b+g)
T @c)*(a+b) | Za(a+b) | (Zatb+p)(atb)(atp)

2 8
( ?zi)r(z3>)2<(?)%7)(24 [(b4 + %) (1 + cos® 6 + 2b%8%)(1 - cos? © + 6 cost ©)

+8 (b’ +8%b) cos® o ]
4 4
+2b%2 B (1 + cos? ©)r4b?B% (1 - 3 cos? 6 + 4 cost )

+8 (BPB+8%D) cos36£| } .
(232)

Expressing {r?) and {r®) interms of {r*) and rearranging terms,

equation (232) becomes

-2(E, -E )4] ” ——
(3) [ 1”70 >t D “i(ktc") R
X&) 0 = T o) RS (4:)(3)“‘(57 J bab [ pape
(2a + b) 1 + 1 +a(b+ﬁ)+ﬁ(a+p)+b(a+b)
a(a+b)? \b+pB B -b a(a+b)(a+ B)(b+pg)(b=~p)

X , 7 (b + %) (1 + cos? ©)
+ 2b%B2 (13 - 19 cos® @ + 48 cos? ©)

+ 8 (b3 +B3Db) (7 cos® ©)
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(3) and performing the

?

Expressing the coeificient in terms of a and X(0)
the preceding expression becomes

integrations over dQ,

(3)
(3) _| _a"x(0)
*& ‘[ (1) (3) (17 (5)° }

(2a + b) 1 1
x f bdb fﬂdﬁ{ a(a+b)7 <b+3 +B-b)

+g(b+3) +B(a+ B) + b(a+b)
a(a+b)(a+p)(b+pB)(b-B)

x{ 7(bt+ g4) [F(b) F(B) + 2 G(b) G(B) ]

+ 2b? B2 [—123 {F) -cm)} {Fp) -6 }

L2 R0 F8) v 2 GiD) GB) )

48 {E(b) £(8) + 12 F,(b) F,(B) + 24 Fy(b) Fs(ﬁ)}:l

Ty b2 g2
-8 (b3ﬁ+33b)[ % [&(b) £2(B) ]::36 Fz(b) Fg(ﬁ)] ]} (233)

The integrations over g are executed using the following results:
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2
[ oRearBd p I e g [F() P + 2 G0 GO

¥ (2a + b)db + +
2@ D) {FF +2GG} .

o f“’ b (22 + b)db
0 a(a+b)

o
{F+2G}+2ir |
0

b(2a + b)db 28%dB 2 g2
| S | aones @0 [P -co HEe) -e® ]

06
:_”rf b’(2a + b)db (F—G)(F+—G+) .

o a(a + b)
b(2a + b)db 2p%dg 2 42
S Sarn? Gt m O [Fa) Fa@) w2 Geb) G(8) ]

= in | b6(2a+b)db{F2F:+2GG+} ,

6 a(a+ b)

I b(2a + b)db I 26%dg (b5 [f(b) £(8) + 12 F4(b) F4(B) + 24 F3(b) F3(8) }
a(a+b)? (B+ D) (B -b) b?p?

°0

o0
B (2a + b)db . bz(2a+bgdb - - +
_—24ﬂ6fm{f+6?4—3F3}+11rJ a(a+b) {ff +123’-43:4+24F3F3} ,

b(2a + b)db 28%dg - [?Z(b) F(8) + 6 Fy(b) Fz(ﬁ):l
] Saenr | @rveom PR ba

o] oo
b(2a + b)db | o , bt(2a + b)db - +
=-67T6f —{;m%r—{.fz-3f‘3}+21ﬂ0fW{32?2+6F3F3}

Using the above integrals, equation (233) becomes

(3)

5
g@® =[ a® X(0) ]

(7)(3) (5)°n

X’f 23+ b)db [“,a(“m__(ﬁ)b_(_@ €5 6% -5 Fy
0

a(a+b)

+ (4)(7)(6) b (-3 1-‘3)]

. 7 B%(2a+b)db + + M
+10f W[(z)m (FF +2GG)+13(F-G)(F -G)

- (19)(F, F; +2GGY) _(L’bgﬂ (5,57 + 6 Fy F1)

+(—ﬁl (ft'+12?4?;+24F3F§)] }

(234)
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The preceding result for. X(4)(3) may be expressed in terms of polynomials in b

21
and exponential functions ed:lb and ei ib by using the definitions for ¥ (b),
G(b), ... f(b), given throughout the discussion. If this is done, the resulting
expression would cover several pages; therefore, this will not be done here.

Quadrupole-Quadrupole Interaction Energy

Having evaluated each of the X(j) 3) quantities in equation (202), the
expression for the quadrupole-quadrupole order correction to the interaction
energy may be written down using the quantities defined in equations (203), (206},
(214), (228), and (234). By referring to each one of these equations, one can

see that each of the terms X(j) (3) , J# 0, has been given as sums of two terms

eiz ib and that each coefficient has been expressed

(3)

in terms of X(0) (3) . Hence, substituting for the various X(j) , equation
(202) becomes

ib
proportional to eil and

_ (3) a® 2| 7 s 48
AEq_q = X{(0) [ 1+'(3)—(5)m= 3 [éfdb {b (F+2G)+12b(ftr-4F3)—T (f+63'4—3F3)]

-
6
+4i [ db lbs(F F++2GG+)+—E— (F, F; +2GG")
0

- e -
_ bt (FF +4F3F;)+%(ff +1254?4+24F3F:)l:|

r _db )
- 4a [of @+ [5b (F+2G) + (4)(8)(3) b (F, ~ 3 Fy)

et (i+6§}’4—3F3)|

. ¢ _db
+10f mrh {B) @ (FF +26G") -2t (F, F, +2GG)

- @) (MGG +4F, T, + 24 F; Fa)

+ (@) (LR (EE + 12 F FL + 24 Fy Fy) | ]

0 a(a+ b)

o« 2
+[ I —b—m—’—-, l12b2[131=3_ (13)(15)—“::!- - fg’)] +b‘(7 F3+4—1;}-‘—)}:|
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T (2a+Db 2
+(4)(7)(6) b (52—31“3),

vi [ 22RO Loy FF r2a6h
0

a(a+ b)

+13 W (F-G)(F -G) - 1968 (F, Ff +2G G)
- 56 b (F,F; + 6 Fy F3)

48 B (Ff +12F, F; + 24 F F+)}:|
+ 494 3 X3 (235)

In the above expression for AE , various groups of functions appear in more

than one place and each group of terms consists of two integral expressions

. ib 2ib .
proportional to ei1 and ei ! as before. Comparison of equations (201)

and (235) shows explicitly the increased complexity encountered in going from
the dipole-quadrupole to quadrupole-quadrupole approximations. In particular,

(3)

the group of terms corresponding to X(3) is much larger than the

(2)

corresponding group in X (3) This shows that if one is interested in the

(2)

coupling between Hq and the field operators for approximations beyond the

dipole-dipole, one must go on to quadrupole-quadrupole orders before obtaining
additional results of interest.

ADDITIONAL RESULTS AND CONCLUSIONS

General Remarks

In this calculation the interaction energy of a two-atom system has been
obtained to quadrupole-quadrupole orders. The results are given in terms of
the various approximations, to compare the first order results with those of
Casimir and Polder [1]. Subsequent approximations are expressed in terms of
the electrostatic interaction energy X (0) (1) , which in turn gives self-
consistent results in the various degrees of approximation., This procedure
also serves as a check on the coefficients associated with the different cases
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ERERa

considered. In addition, the results for each degree of approximation is given

in terms of expressions proportional to f(b) eﬂb and f'(b) eizlb, where f(b)

is a polynomial in b (b is a dimensionless parameter defined by b= «R). Also,
the final results are given in terms of functions of R (R is defined as the
distance between the atoms) with an explicit R~! dependence to show the
modifications to the electrostatic interaction energy due to the electromagnetic
field interactions.

The total interaction energy of the system may now be written as

AE = &t {AE +AE. +AE (236)

d-d d-q q-q } ’

where each of the above quantities is defined in equations (162), (201), and
(235). In addition, these quantities are expressed as sums of terms defined by

X (j) (1) which correspond to various types of interactions between the electro-
static and field operators. In general, the breakdown is as follows: The

electrostatic interactions are defined by X (0) (1) , i=1,2,3, The terms resulting

solely from electromagnetic field interactions are represented by X (1) (1) .
These terms contain the interactions due to the second-order g_le_citromagnetic
field term in the Hamiltonian, which is proportional to A(p)-A(p). The next
group of terms, denoted by X(2) (1) , includes interactions resulting from
considering both the f1rst and second order terms in the radiation field
perturbation given by A(p) P(r) and A(p).A(p) If the problem had been
treated using only the first-order term A(p) P(r) in the Hamiltonian, then

X (1) (1) and X(2) () would not have entered into the discussion. The terms
resulting from the interaction between the electrostatic interaction operator

(1) . Finally, the
(1)

(2) and the field operator K(:).) 15(?) are denoted by X (3)

terms resulting solely from the field operator A(p) P(r) are given by X (4)
If the problem had been treated considering only the first-order field operator
—_— —— — 2 i
A (p)+~P(r) and the electrostatic interaction operator H(; ), then only X(3) (1)
and X(4) (1) would have contributed to the interaction energy. In this way, the
various contributions to the interaction energy may be studied separately.
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In subsequent discussions, the dipole-dipole case as well as the higher
approximations are again considered. The behavior for large and small
R (R % X) for the dipole-dipole case is considered. The dipole-quadrupole
result shown in equation (201) is expressed in terms of polynomials of the form

‘b Y
f(b) e , £'%(b) e lb. A further transformation in terms of real quantities

- -2

f(y) e y and f'(y) e Y is made on the resulting expressions. The results
are then examined for the limiting case of large R. The small R case is
immediate since the radiation interaction terms contain a coefficient 33 , which
for small R (a = R/X) causes these terms to vanish leaving only the term

(2)

X(0) , which corresponds to the electrostatic interaction only. [See
equation (246).] Finally the quadrupole-quadrupole results are considered
again and are expressed in terms of polynomials in b, as for the previous
cases.

Dipole-Dipote Approximations

The first check on this calculation is provided by the comparison of the
results obtained here with those given by Casimir and Polder, and others. The
expression for the dipole-dipole approximation generated here and given by
equation (163) is shown to correspond explicitly to the results reported by
Power and Zienau [4]. In obtaining this first-order result by means of straight-
forward stationary state perturbation theory, one also obtains additional
information regarding the types of interactions involved in the overall result.
For instance, one can show explicitly how the electromagnetic field interactions
combine with the electrostatic interaction to absorb the factor resulting from
the purely electrostatic interaction, thus allowing one to write the interaction

energy AEd q 28 in equation (163). One also can show precisely how the

ib
contributions from the integrals over f(b) e:bl are eliminated by the residues
2ib
at b =0 of the integrals over f'(b) egc ! . Also, these residues give a factor
which exactly cancels the contribution from X (0) (1) . [See equation (163).]
The resulting expression for AE is then found to result only from the

d-d
integrals containing f'(b) eiz lb. It is for this reason that the higher order

. ; . +i +21ib
results are given in terms of integrals over e and e .
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The behavior of AE [defined in equation (164)] for small and large

d-d
R is of interest. The comparison of the magnitude of R discussed here is
made with respect to the characteristic wavelength A corresponding to the
frequency associated with the 1s — 2p atomic fransition. Using the relations
(E; - Ey) =#i2Zmy, ¢ = Av, one obtains the connection between A and R,

given by (E; - Ej))R/hc = (27/A)R. In addition, if one defines X = A/2w, then
a = R/X. Thus, in the case in which the atoms are separated by a distance R
such that R >> X, the result given in equation (164) becomes

_ 4 (E; - Eg)? <I‘12> <1‘22>
AE  g(B> &) = - (3)27R? (fhc)®

-2
vldue

% of [(E; - Ep)/Bic]”

2 5 6 3
X[“ wR) ¥ R * (uR)3+(uR)4] ' (237)

The above result is obtained by writing the denominator of the integrand in

2
equation (164) as [{ (Ey - Eg) RAic )2+ {ur} 2] and then neglecting {uR} .
This is allowed since (E; - Ej)R/fic >> 1 and the leading contributions to the
integral in question result from small values of { uR } due to the exponential

factor e—2(uR) . This is the same as neglecting (hck) or (Hick') in favor
of (E;- E¢) in the denominators of the form [(E; - Eg) +fick] found in the
expression for AE given by equation (134). There the major contribution

d-d
to the integrals over k and k' comes from those values of « a_IlC_l_, K'__such that
. i(k+k') R
k, k' << (Ey - Ey) /fic on account of the exponential factors eﬂ(K k') R in the

integrals [10]. Factoring out R~® from the integrand of equation (237) and
rearranging factors, one obtains
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4hc <r£><r22>
T (3)*7RT (B - Ep)*

AEd_d(R >>A) =

o
x [ ®Rdw ¢ 2B { Ru)t + 2(Rw)® + 5(Rw)? + 6(uR) + 3 }
0
(238)
- t 1
Integrating term by term, using the integral formula f xn e X dx =n!/ tn+ s
0

the integral factor in equation (238) is evaluated, and the resulting expression
is

atc <e2)<e2) (Zf) . (239)

ARy gB>R) = - GRT (B, - BT

Casimir and Polder [1] give this result in terms of the static polarizabilities of

2 2
the atoms defined by « (I) 5-3%&1]5—) . Hence, including e* in the final
1= 5o
result for AEd d and rearranging numerical factors, equation (239) can be

shown to be equal to equation (56) of Casimir and Polder's paper [1]. Equation

(239) shows explicitly the R-7 behavior of AE d-d when the internuclear

separation distance R is large in comparison with the characterisitic wavelength
X. Eqguation (239) may be put in a simpler form by expressing it in terms of

(1)

X(0) as follows:

23 hc X(0) (1)

37 R (E, - Ey) (240)

AEd_d(R >>K) =

Letting y = uR in equation (163), one obtains

140



= «s‘g!

e
Bl

Z2uR

3
AE = x(0) M 435;

d-d
R ETDLE D (1) }
T T3(E - Ey)R 7@

Comparison of equations (240) and (241) shows that for large R, Q(i) (a)
decreases monotonically with increasing R (Fig. 15).

f°° Rdu | (uR)* + 2(uR)3 + 5(uR)2 + 6(uR) + 3} &~
2
[a? + (ur)?]

(241)

1.0 1

0.5 1
G (M(RrR/x1)

R/%

1

Figure 15. Behavior of the correction factor g (1) (R/Xx) for various
internuclear separation distance R/X.

for small R may be obtained by considering

The behavior of AEd-d
The denominator consists of two

the factors of equation (164) as follows [10].
small quantities; thus, one cannot neglect one against the other. On the other
e_2 may be replaced by unity since the leading

hand when R is small,
contributions to the integral in equation (164) result for small values of (uR).
Finally, the leading term in the polynomial in (uR) corresponds to (uR)™%.

With these modifications equation (164) becomes
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_A(E - By)? {rf >3<rz > i 2
37 R® (hc) 0 [{(EI-EO)/hc}2+u2]

—d (R << K.)

(242)

(o]

_ 2
Writing the integral as { (Ey - Bg)/ hc} du and using the
% 0 , [{(E-E)Mic)?+
integral formula f a’dx/[a’ + x?] = n/2a% |, equation (242) reduces to

0

?

<1‘L2> ( 1‘22> :I

_d(R << K) = { - 3 (E1 _ EO) RG

To express the above result in more familiar units, one needs to include the
factor 94, as indicated in equation (236). Using the following relations, [see
equation (86)]:

<21> (21+z)'( )22 E - VAR
27 © Ta T T 23,47 ’
and including the 34 factor, d d(R << X) becomes

(1)

AE = ! AE, (R <<X)

d-d
= (-8) <—§:—><-21—) 6(—%"—>6 . (243)

Note that when (E; - E;) is replaced by an average energy [6], the (-8)
factor in equation (243) becomes (~6). Equation (243) is just the result
obtained when only electrostatic interactions are considered; it corresponds to
the London-van der Waal's interaction energy in the absence of radiation fields.

Thus, in the limit of small R, § (1) (2) goes to unity, showing that for small
separations the interactions with the radiation field are unimportant and for
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i

large separations the introduction of the radiation field gives rise to a
weakening of the van der Waal's force, u

The behavior of Q(i} (R/A) for various R values (R >> a;) is
illustrated [1] in Figure 15.

‘Dipole-Quadrupole Approximations

The detailed analysis of the higher approximations is not as straight-
forward as in the dipole-dipole case. Before one can analyze the equations

corresponding to the dipole-quadrupole order interaction energy AE d—q given
by equation (201), one needs to simplify this expression by substituting the
definitions for ¥, ¥,, ... etc. Analysis of equation (201) shows that each

2
X(3) (2) consists of a group of elements having the same functional dependence
as in the dipole-dipole approximation, but with the powers of b in the various
denominators decreased from b= to b-2. In addition to these terms, each

group X(j) (2) , j=1, 2, 4, contains a set of ''new' quantities defined in terms
of F3, ¥, F».

Using the relations given in equation (201) and the following equalities:
{12:?+36.‘I-2-(3)(52)F3}=12(?-4F3)+36(32-3F3) ,

- - + -
{4?5 +6 F,F, + (2)(26) F3 Fy } =4 { FF~+ 4 F, F;"}

+6{F,F r6m T

{F-4a73) = {Fo-373}

i14. This effect was proposed by Verwey, Overbeck and Nes in their book,
Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948)
and led Casimir and Polder to consider the problem.
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the expression for AE defined by equation (201) becomes

d-q

2)[ e
_ 2 22 a3 x(0) [6 b+ 4 ab® + a%b?
AE -q = X(O) - (3)3 51T 6 a(a+ b)z

] {F+2G}db

©0 =]
[21° - ab?] . [4 ab® + a?b] + +
+120f SEet {?-4F3}db+216f e (Frezed}a

s f°° ol 5 +ar, 7 J b ‘6 f°° ab’

o g +
D) T {F,5,+6F;F Jab |
0 0 (244)
where the above functions are defined as follows!%:
[F+2G) =-2—11—63-[(b2+31b-3)e1b—(b2—3ib—3)e—lb:| ,
{5_41“3} = 2—;}? [(ib3—6b2- 15ib+ 15) 6.+ (ib*+ 6 b? - 151b - 15) e'lb] ,
[Frte2cat} = :L—i,%g [l-'(b4+21b3— 5b% - 6ib+1) e2 P _ (bt~ 2ib% - 5 b+ 6ib + 1)'2”’},

B, 5
{55 +amF) = 7y [(—b6-4ib5+14b4+421b3-81bZ-9Oib+45)e 1

- (-b%+ 4ib% + 14 b - 42 ib® - 81 b? + 90 ib + 45) e‘ZIb} ,
1 b

i} 2
[5,5,+6F F; ) = T [(-bs-ﬁib5+27b4+84ib3-162b2-1801b+90) et

_2i
— (<P 4+ 6ib%+ 27 bt - 84 ib% - 162 b2+ 180 ib + 90) e lb}

15. These relations are obtained by using the various definitions for
F, G, ... ¥,, and forming the appropriate sums and products.
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fiaas= O,

Comparison of equation (244) to the dipole-dipole results given by equation (162)
+ib

shows explicitly the terms of equation (244) having the same f(b) e
f'(b) eiz dependence as in the dipole-dipole case.
Using the techniques outlined in Appendix C, the b-integrals appearing

in equation (244) are individually evaluated. Incorporating the results of these
16

transformations equation (244) becomes

d-q

2 .3 g 2
AE =X(0)(2) 1__233'_ ( )_2 _‘L.L__M(y +3y+3)e dy
@) (5m) 0 @+ y2)

o 2 2 -
_(3’.7.)+24f _(),—_.Ea—)z.(y-'i+6y2+15y+15)eydy
a 2,2 2
0 y(a®+y%)

oo
+2(37r> 4y—2a y4+2y+5y+6y+3)e dy
0 (a+y)

-4 _'2_2_ + 4 + 14 + 42 + 81 + 90y + 45 e

e 2
+3 (_937’) re [ — 24 (B Gy 27yt s 8ayP 4+ 16232 + 180y + 90)e'2y} .

0 yial+y?h)
(245)

The constant factors in the above equation are the residues at the origin (b = 0)
of the various terms considered. Adding these constants, one sees that their
sum is zero. In addition, they combine in pairs; the residues of the first and

- 4 -2
y ...)e yaddupl:ozero,

third integrals proportional to (y .) e and (y
- -2
and the "new'" terms proportional to (y .) e y and (y6 .)e y also add
Considering these terms in two groups, one sees that the group

to zero. i
associated with the '""new" terms has an additional y~? factor, which gives rise

16. The ordering of terms in equations (244) and (245) is the same to show
explicitly the results of the various integrations and transformations.
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to a lower R} dependence,. Rearranging“ terms in equation (245) to reflect
the preceding groupings and excluding the constants, AE d_q may be written

as follows:

AE = X(0) +

2 3 (2) o 2
(2) 224’ x(0) {2 f (4y2+3a22 2+ 3y+3) o dy
0

d-q (3)%(5m) (a? + y2)
g 2 2
yoflir2a) 228) (284 5yPe 6y +3) e Y
0 (a%+yY)
oy (2) o 2 2 _
a;A(;)) o (" -23%) (3,624 15y + 15) o
(3)%(5m) § @i+ y?)
-2 ——”‘2—sz- (8 + 105 + 53y% + 168y + 32432 + 360y + 180) e 2
0 Y@ +y)
+4 igy——; (F+4y5+ 1474+ 42y3 + 8132 + 90y + 45) &
0 yrai+yh)
= x©)® . xiz) (a) +x2f2) (a) (246)
. 2 2 . . .
where the new functions Xl( ) (a) and Xz( ) (a) are defined in the expression
for AE d-q’ Subsequent calculations will show the significance of the above

definitions. Comparison of equation (246) to its dipole-dipole counterpart

given by equation (164) shows that, unlike the dipole-dipole case, equation (246)
consists of three separate terms, with one of them being solely due to the
electrostatic interaction between atoms and the others arising from the inter-
actions between the electrostatic and electromagnetic fields.

In order to further analyze the results for the dipole-quadrupole case,
one needs to examine the large R (R >> X) behavior of equation (246). Follow-
ing the same procedure as that used for equations (237) through (243) and

17. The last two terms in equation (245) are combined by first getting

2
y2 (al2 + yz) as the common denominator.
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TSRS %

collecting all the terms having the same yn power and similar exponential
factor, the preceding expression becomes

AE d-q (R >>X)

oo

- (2) 2* a 5 2 -1 -2) oY
= X(0) L+ G -azof (v + 11y + 51 + 120y~ + 120y72) e dy

o0
2 -
- f 2yt + 12y° + 58y% + 174y + 327 + 360y~ + 180y72) e 2y dy
0

o0
4 -
+T f (Y8 + 10y° + 14y* + 42y% + 81y + 90y + 45) e 2y dy
0

(247)

Evaluation of the above integrals is accomplished in the following way: For the
integrals having positive powers in y, one simply uses the formula

o0

n - +
f X e tx dx = (n!/tn 1 ) . The integrals containing negative powers of y may
0

be combined by letting y — 2y in the integral containing e_y, resulting in the

relations
T AT R
[y eVay= [y e |,
0 0
A 1 . -2 -2
fy eydy——z— fy e yd
0 0

Doing this, one finds that the sum of these integrals is identically zero. Per-
forming the indicated operations and combining the resulting factors into two
groups having a and (1/a) coefficients, equation (247) becomes
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_ (2) 22 a3 71 927
sy - x| 1o B (1) (2 ]

2 (2)
_ { X(0) (2) 284a ( )+ 1854 X (0) } . (248)

- 1357 a

2
Using the definitions for a and X(0) (2) , one can see that a X (0) (@) | 1/R?

and X(0) (2)/a ~ 1/R% hence, the above expression may be put into the
following form

A B C

AEd—q (R>>X) = &Y + I + -R—S , (249)
where
_ 284 2 4
A = T35q1kc <r1 ><xe> ’

5o DD

(Ey - E) ’

_ 1854 hc efSed>

1357 (Eq ~ Eg)?

Equation (249) shows explicitly how the electrostatic interaction term B/R®
is reinforced by a factor proportional to 1/R® and decreased by a factor
proportional to 1/RY', To determine the relative magnitude of these factors,
one can rewrite the above coefficients in terms of atomic units.

Referring to the equation for AE given in terms of factors

d-q
proportional to R~?, R=%, and R, it is of interest to note that this result

should be expected from the general form of AEd—q’ [see equation (246)].

Hence, one may write the interaction energy as follows:
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AE =

dq , (250)

‘ 42) (R/K)  %(0) (2) @(2) (R/X) }
RT. T ®R T R

where the above functions are obtained by simply factoring out a-2, R-%,

1(2) @), X0 ana xz(z)

equation (246).]

and a~! from X (2), -respectively. [See

The behavior of the above quantities in equation (250) may be inferred
from Figure 15 and by comparison of 5‘7(2) (R/X) and Q(z) (R/X) to the

function § (1) (R/AX) of equation (241). Since the functions appearing in
1)
Q(

AE d-q are much more complex than
be required to numerically evaluate the integrals to construct the plots

corresponding to Figure 15,

(R/X), a computer program would

Quadrupole-Quadrupole Approximations

The increased complexity of the expression for the quadrupole-
quadrupole order interaction energy AEq q given by equation (235) makes

it necessary to give only the general expression equivalent to equations (162)
and (244) for the dipole-dipole and dipole-quadrupole cases, respectively.

Starting with the expression for AE given by equation (235) and

recombining the various terms as in the dipole-quadrupole case, AE

may be written as -
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150

(3) w© 3 2. .2 3
_ (3) . a®X(0) 3 (210° + 20ab? + a?b + ad)
AEQ—Q = X0 (3) (8)° (Tm) (-)f b Fsdbl: 3a(a+ b)? ]
v 8 (6b° + 10ab? — 7Talb + 423
+Ofb(ff-4F3)dbl: = 7D

db

o P

I (f+6ty-3F;)
b b

0

8 (33b% + 40ab® - 40 a’b + 64a%)
X 7
a(a+b)

° 2
+ [ (19b*F, -2 F, + 6 Fy) db [————b———}

G a(a+bh)?
+i [ Boab [F F++2GG+] 2 (400" - i9ab - 38a?) |

g 3(a+b) ]
+i }o b8 db [F F++2GG+] 40b% + 47ab - 502°

6 22 3(a+bh)?

T o _ + ot 13a? (2a + b)
+1Ofbdb[(F G) (F G)][W

+1i [ b'db [.‘}”.?_+4F3 F;J [-8—;}
0

0
) P +7 [ 8(22% - 9ab)
+10f b4db[.fz.f2+6F3F3:l [—m}z—-—]

. - 4 + 32abt
Hof bt db I:GG][———(a+b)}

o«
+1 [ bdb [ff‘+ 12 5,5 ; + 24 7y F;:l
g

(251)

|3 (6b? - 5ab + 8a?)
3(a+b)?



R == S,

The preceding expression is no simpler than equation (235), but it is more
useful since the various functions have been regrouped into sets previously
considered, which simplifies further analysis. The '"'new' groupings generated
may be expressed in terms of polynomials in b using previous techniques.
The new combinations required are as follows:

b

{f+634_3F3} =-2i—;-5 {[b4+4ib3-39b2-1051b-105] e

_ bt - 4ib? - 39b% + 105ib ~ 105] e P } ,
{if +12 5,57+ 247, F3 }

= Egi‘b_e {[uo8 + 81b" - 40b% - 144165 + 384! + 7681ib% - 1152b% - 11521ib + 576]

+12 [-b® - 10iDb% + 49b% + 144ib® - 264 b? - 288ib + 144]

+24 [bA+6ib% - 15b% - 18ib+ 9]] e21b

-[ [b8 - 8ib? - 40b% + 144ib® + 384 b - 768ib% - 1152b% + 1152ib + 576]

+12 [-b%+ 10ib% + 49b* - 144ib% - 264b% + 288ib + 144]

=21
+24 [b* - 6ib° - 15b% + 18ib + 9]] o 21b }

Using the above relations and the dipole-quadrupole approximation,
equation (251) may be further analyzed. It is not necessary to rewrite
equation (251) explicitly in terms of polynomials in b, since only a comparison
of this result to previous answers is given. Reference to equations (244) and
(251) shows that the quadrupole-quadrupole result contains groups of terms
appearing in the previous dipole-quadrupole case but with different polynomials
in a and b. Comparison to equation (162) also shows that the quadrupole-
quadrupole case again contains terms having the same functional dependence

b
f(b) et as in the dipole-dipole case. Thus, one can see that the results are
systematic, in that the higher approximations can always be expressed in terms
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of previous quantities appropriafely modified, plus some '"new' terms. An
analysis can be made of the dimensionality of the various integral terms of
equation (251) in terms of the constant a, Since a is proportional to R,
one can see that terms proportional to RJ, R'g, ... R~ are included in the
various elements of equation (251). For example, the eighth integral of that
equation is an example of terms having an R-7 dependence since its value

is independent of a and its coefficient is al X (0) ( ). The rest of the integrals
have various factors proportional to 1/a, 1/a%, 1/a® and 1/a%, which when

multiplied by a X (0) (3) gives rise to the R-! dependence indicated above,
Hence, one can always express the results of equation (251) as follows:

5(3)

(3)
K
AE =
a~q { R

% @m) , 1 @)
R® R’

(B/X) ,

(252)

+

+
R0 R

93 rm ¥ (R/%) }

The algebraic form of each of the above functions can be obtained by separating
the terms in equation (251), as was done for the dipole-quadrupole approxima-
tion. When this is done, one finds that each function is the same as in previous
cases with only more complex factors f(b) et b. Therefore, their behavior
for all R is expected to be like that on Figure 15, with only a more rapid
decrease for those terms whose limiting form for large R decreases as R~

and R~

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Marshall Space Flight Center, Alabama 35812, April 10, 1970

948-70-70-27-00
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APPENDIX A

POLARIZATION VECTOR SUMS

In the course 9\f tllis calculation, various products involving the
polarization vectors eh(x) need to be evaluated. To calculate these relations,

one defines a coordinate system (Fig. A-1).

£

Figure A-1. Polarization vector coordinates.

Using the coordinate system in Figure A-1 and the following unit
vector relations:

A A A A
€9 = L X+ L X+ £45X 5 ;

A A A AN
€ = Loy Xy + 4y Xy + Ly3 X

A A /\' _ N
ko= L3 Xy + L3y Ay + 233 X4

A A AN A
K

A .
€1° €y = €gr €y = -k = 1 s (A—i)

one obtains the various sums needed.
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The first sum to be considered is evaluated as followé:-

A A A A A A
€A(K)'€A(K) = €4°€1t €g06y = 2

T D

(A-2)
1

The next sum is given by

i i [’é}\(}')-’e‘w(?')} {2}\(}3-2}\,(}2")}

= =/€\1(i/<\)-/€\1(f/<\')]2+ ‘/6\1(?)./6\2(’/{\')] 2

A AA A 2 AA A 2
+{ 62(K)'€1(K')l + { ez(x)-/e\g(i{')l
In terms of the unit vectors of equation (A-1), the above becomes

£ 1 1 ‘e 1 £I
121{ ittt ta b Uy

01 '+11'sz'}
T ioi a2 i T2i 21 T2y 2

Adding and subtracting Z £ 1 { 1 léi !Z;j and rearranging factors, this
ij

expression becomes

N L A A N B AN A
{E 1171 ki kj Z_ 13 71j 3i° 3j
ijk ij

! ! ! !
I A A N B S LN
* %{ 217 2] ki kj 123 2i"2j 31 3j}
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k

Combining the sums over i,j and using the sum rule for orthonormal systems

Z £Ki £ = 6ij’ the above quantities combine into

£ -4 4! L1 -4l !
;j'eii 1j{6ij 3 3j}+izj 2i Zj{éij 31" 3]

Adding and subtracting Z Lo 13j { 6ij - léi léj} , one obtains
ij

£ 2 L A S B Y | -2 g
%{ ki ;cj{éij 3i 3j} ;J 3i 3j[6ij 3i~ 3j ’

Summing over k in the first sum, one obtains

AN A
Z 6ij “513' 3i 3j} ’

which when combined with the second term, gives

zi{/\/\/\’\:}l/\/\/\/\,]
7\2;/1 & e}\(fc)-e}\,(l{) e}\(K).e)\'(K)

, lz;. Iaij— ), (0), lléij- ORY \ , (A-3)

A

A A
where one uses the relation & = (R){ Xy + (l/C\)z Xy + (Q)3i3 and the one in
equation s\A—i) . AEquation (A-3) may be expressed in terms of the angle
between k and k' defined as ©. To find this relationship, one takes the

result in equation (A-3) and expands it over i and j. Hence,
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-2 4 AN
Z (dij 3i 3j)(6ij 3i 3j)
ij
= 3_(2 +4 4 +14 ( +1'£+1'1')
3 ( 31 Loyt g tgp T 433 33) 31 31 3232 733733
+(2 2 2" 2" +2 4 2" 2 10 4 2" 1
( 31 731731 31 32732732732 733733 33 33
VS S A Ay B B L L L S L A
+2( 31 732731732 31 33731733 "327 33 32733
Combining the above terms, one obtains
1+ Z(z 2" )2+z(z 2" )(z 2! )+z<z 2! )(1 2" )
4\ 731731 31 31 32732 3131 33733
I ¢ 4 )
+2( 32 32)(33 33

Analysis of the last three terms in the above expression shows that these

elements correspond to the cross terms of the product Z (131 2! ) (ﬂ 3] l;’,j)

2
and that the term Z <£31 2! corresponds to the sum of the squares of this

product, Hence,

A A ALA A
Z Z € (k) € (K')}{E (k)€ ,(K')} »
A=1 A'=1 [ A A

N %(1311;1)(131'%3') = {1+ cost o) . (A-4)
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The next sum consists of polarization vector components given by [10]

1l

5 [a®] [6®] -(4) () + () &)

i J

Zz Y I
p K1 KJ 3i 3j

laij_ @), @ } : (A-5)

The next term to be evaluated consists of products of the form con-
sidered above and given by

3, 3 @] [ [50] [, )

1 J

= {8y - B, @), Hey - o, [ (A-6)

The last sum to be evaluated consists of combinations of terms
previously considered. It is evaluated by taking

i )3 {/G\A(Q)'/G\A'(Q')l [QA(Q)] [27\'(,’;:)]

A=1 A=l i j

4

= 2.4 4. 1 £' 2. .2
; (1k e 1t a fac Pai ey

IS L B AN S L B
okt ik T2 "1 T T2k Tok T2i T2j

= [éij - (Mi(ﬁ')j - (f’c‘>i(ﬁ)j + (Q)i(;?wjo?-f?') } . (A-T)
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APPENDIX B

PROPAGATIONAND POLARIZATION VECTOR
ANGULAR INTEGRALS

Introduction

. In this appendix, the integrals over the angular coordinates of K and
k' are evaluated in terms of functions depending on the magnitude of « and k'.
In the course of evaluating these integrals, one uses the following relations:

b = kR ,

B = k'R ,

A . A . . A A

K = sin @ cos ¢ ey + sin 8 sin ¢ e, + cos § ey s

X = xixkRcosh = x+ib cos b ,
cos © = cos 0 cos §' + sin 6 sin 0' cos (¢ - ¢') ,
m a Xm eax m m-1 ax
[ x"e™ax = —=— -= [x Te & . (B-1)
a a

The single integral functions over dQK are evaluated first; then using these
results, the double integrals over dQ and dQ ! are considered. Finally,

the last section contains | the relatlons satlsfled by various terms having
exponential factors +i(k+x')-R and =i(k—x')-R.
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+.—> g
Evaluation of | ef!<*RcosNod o,
. ; #ik-R
The simplest integral to be evaluated corresponds to f e dszK .

After substituting for the quantities defined in equation (B-1), this integral

becomes
+ik-R mozm +X
[ e = | e™ sin @ dg d¢
K
00
+ib
27 X sinb
= (xib) [ eTax = ar (3 . (B-2)
+ib
. . +ik-R
The next integral to be evaluated is given by f e cos 0 dQK .
Using previous definitions, this integral becomes
= +ib
f e_IK'RcosedQ =2.—7T§ xe" dx
K -(ib) 4
-ib
= 4ri Cosb - Slk?zb = 47ib G(b)

Similar operations are used to obtain the corresponding integral with a (+)

sign; the results are

(B-3)

— —

f e*“"RcosedszK = ¥47ib G(b)

The next integral is given by f ™! R cos? 9 dQK. Using the same

substitutions as before, this integral gives
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N +ib

.~ 9
f eﬂKRcoszeds‘z =-—.7I-2— f x2e™ —_2—
kK (xib) Sib

Choosing the upper sign in the above expression, one obtains

f +i?~ﬁ ’sinb 2cosb 2sinb }
e 4T + .

2 = -
cos® 6 dSZK b b2 3

Similarly the other integral gives

—
K

ik R

_'—.._b +-
felKRcoszedQ =fe cos? 6 dQ
K K
Combining these results, one obtains
+#H%-R
f R g2 g dSZK = 47 {F(b) + G(b)} =4m Fy(b) , (B-4)
where F(b) s-s—l%ki + G(b), and G(b) z—c—‘%s-z—b— -i%gﬁ . Further
combination yields
| R (1 3c0s?0) = - (2Bm) {F(b) +2 G(b)}= - (2°r) Fy(b)
The next integral to be considered is given by f R 3 .

Using the same techniques, one obtains
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f JHR 3, ae, - T 47ri‘ b G (b) _% Fa(b)} =+ 4wib~t F,(b)

(B-5)

The next integral is given by f eﬂK'R cos? ¢ dQK . One can show

that this integral is equal to

J et R costodn = an [mm) + Gy - F0) | = anb i)
(B-6)

where Fs(b) = F(b) + 2 G(b) and f(b) =b? (Fs3/b) + G(b) - 8 Fs(b).

Evaluation of ffeii(”"')‘ R cosh ede, de,

The firs_li_integrg} of this type to be treated corresponds to n = 0.

Separating the ¢ and «' variables, one obtaing

. —.-—D' .-—D .—D.—’ . '.

[ ) R o 4q | = | R 4 [ ™" Rag |
K K K K

When comparing this expression to the results of equation (B-2), the above

integral gives

. —P+——D' .—.
[f ettt “)Raq ae , = 2tn?
K K b

) (%)

2tn? {F(b) - G(D)} {F(B) - GB)}
(B-7)

it
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i (k+x') R

The next integral is given by f f e cos © dSZK dQK, . Since

cos © is a function of both primed and unprimed variables, one needs to con-
sider this expression as follows: Taking . '

+i(ktxt) R
[f oKtk RcosedsdeszK

?

fe_iKRcosedQK f [ cos 6 cos 6!

1wt f
+ sin 6 sin 8' cos(¢ - qb')] ek R cos ¢ dQK,
2T

shows that the integral over d¢' is simply f cos (¢ - ¢') d¢'. Using the
0

identity cos (¢ - ¢') = cos ¢ cos ¢' + sin ¢ sin ¢', one readily sees that the
integral over ¢ vanishes when integrated from zero to 2w. Thus, the above
integral may be evaluated using equation (B-3), as follows:

ff eil(K k)R cos © dQK dSZK,

+ik'R cos 4!

+i
fe KRCOSGcosedQ fe cos 0' dQ ,
K K

-2 22 {ba)} {BG®B) . (B-8)

]

i(kik') R
The next integral is given by ff e (etrc) - R cos? © dQK dQK, .

Expanding cos? O, one obtains three terms, one of which contains cos (¢ - ¢').
Eliminating this term, this integral becomes
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:E. —‘—P' .—.
ff e 1(e+x’) - R cos? © dQK dSZK

1
. —»»—b' .—D
= ff eﬂ:I(K-Hc )-R cos® 9 cos? ¢! dﬂK de’

. —.-'.' .—.
+ ff LK) R 52 6 sin? g1 cos? (¢ - ¢") do dQK,

Integrating over d¢, as before and factoring the resulting expressions, the
above equation becomes

. —P—b' .—P
ff eﬂ(xﬂc )R cos? © dQK dQK,

—

ik-R ik R
=feiKRcos29dQ feiK Rcosze'dﬂ,
K K

iR irt.
+ 27 f eilKRsinzesinede f eiK Rsinze'sinede

Using the identity sin’ 9= (1 - cos® 0), the second term in the above equation

is transformed into integrals over c:osn 6. Using previous results in equations
(B-2) and (B-4), the above becomes

. _:__" ._’
IS SFHUHK )R 2 g do _de ,

=2 {[Fb) +G)] [F(®) +G@)] +2GMm G} .  (B-9)
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Combining equations (B~7) and (B-9), one obtains [2]

ff e:l:i(K+K')-R (1 + cos? o) do do .
K K
= 251> {F(b) F(8) +2G(b) G(8) )

The next integral is given by ff eii (eict) - B cos® © dQK dQK, .
Expanding cos® ©, one obtains four terms, one of which is independent of

cos (¢ - ¢') and the other three are proportional to cosn (¢ ~o"),n=1, 2, 8,
respectively. Hence, one needs to evaluate fcos3 (¢ - ¢') do do' by

expanding into products of sin ¢ and cos ¢. After doing this and integrating
term by term, the answer is zero. Incorporating these simplifications, the
term under consideration reduces to

TR
[/ )R 3o do _da ,

. . .

-2 ff eﬂKR coseeﬂx R cos @ sin § do sin §' do"

X {10 cos® 8 cos® 6' - 6 cos 6 cos® '
—6cosaecoso'+6c:osecose'}

Using the results obtained in equations (B-3) and (B-5), the above integral
reduces to
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[f eﬂ:i(?#é")-ﬁ

cos® © do do
K K

= (-a1?) {1o[bG<b> —-Z—Eg'@‘][BG(B) -2—%@]

_6 [bG(b)] [BG(B) -2—%@]

-6 [baw) - 250 | e

+6 [bam)][BGE)] }

_ gtz 1Fa(b) F(g) + 6 Fy(b) Fy(p)]
(bpB) ’
where F,(b) =b? G(b) - 2 F3(b)

Combining equations (B-8) and (B-10), one obtains the following
relation:

(e B
ff (cos © + cos® o) eﬂ(K k') R dQK dQK,

2t 72 [ =[bG(b)] [ 8G®)] ]

+ |bG(b) BG(8) - 2 bG(b) E%&

2 Fy(b) Fa(b) Fa(B)

o g5 L) F@) + 4 Fib) Fyp)]
bp

(B-10)
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L (k) R4
The next t i b .
e next term is given by ff e T cos* O dQK dQ;c'
Expanding cos? ©, excluding the terms containing cos (¢ - ¢') and
cos® (¢ - ¢'), and noting that ff cos? (¢ - ¢') do dp' =3/2 72, the term

under consideration factors into the following form:

TR
ff eﬂ(K k)R cos* © dQK dQK,

>

:I:i R it T
% [8 f gk coSecos“esine dg f &K Rcos o cos® 9" sin gt dg'

+ig R [} . ik'R ¢ ' R
+ 24 f g COs (cosze-cos4 9) sin 6 dé f eﬂK R cos 6 (cosze'—cos4 @') sin g' de'

+ik'R cos 6°

(1 -2 cos® 6 + cos® 0) sin 6 do fe

+3 f e;tlxR cos 6

(1-2 cos? ' + cost 8') sin @' do'] .

Using previous results given in equations (B-2), (B-4), and (B-6), the above
integral is given by

A1
ff eﬂ('H'K ) R cost © dQK dQK,

2 g .
= % [(8)(4) {F3(b) + G(b) - F3 (b)} ‘ F5(8) + G(B) -7 F3(3)}

+ (24)(16>{G<b> -4—%}% {G(B) —ﬂgé@}
+ (3) (16) (16) {Eﬁ(—b)} {—Eﬂ-(f—)} ]

b2 B

= 2 7% [£(b) £(B) + 12 Fy(b) F4(B) + 24 F3(b) F3(8)] , (B-11)
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where, f(b) =b? Fy(b) - 8 F3(b) and F,(b) = b2 G(b) - 4 F5(b). Combining
the resulfs of equations (B-9) and (B-11), one obtains the relation

I eii(Eli")-'fi

(cos2 O + cost %)) dQK de'

_ o2 {[ano) F,(8) + 2 G(b) G(8)]

L (o) £(8) + 12 F4(b) 2542(5) + 24 F3(b) F3(8) }
b* B

Evaluation of f f eFilk=K)R gogn 042, 2,

The first term that needs to be evaluated is given by
iy
ff e:l:l(l{ k') RdQ 49
K K

this may be written as

, - Using the previous techniques and definitions,

—_—

[ eii(Tc'-Tc")-ﬁdQK i [ eﬂ:ifc-RdQKf elix'-ﬁdﬂ

K' K'

ff ed:l(x+xl)-RdQK dQKI ‘ (B=12)

The next term may be written as
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. -—»_——' .——
ff eﬂ('c «')-R cos O dQK dQK,

-, =
+igk'- R

feilK'RcosedQ [ e cos 9' d ,
K K

1

2222 {ba) }{pc®E) }

?

. —»—»r .—»
- ff eﬂ('ﬁ-x) RcosedQK dSZK

The next term contains cos? © and is evaluated as follows:

(). B
ff Gtik—x')- R cos? o dQK dSZK

—_— -

;= it
= f ed:“C R cos? 9 dQ f e ik!-R cos? ' dQ
K K

— - —>
i !

+ik- + .R
+ 2 72 f e KRsinzesinGdef e 1K Rsinza'sine'de'

Expressing sin’? ¢ in terms of (1 - cos? ) and using the results of
equations (B-2) and (B-4), one finds that

() B
ffeﬂ(K «')-R cos? © dQK dSZK,

. -—’-—P' .—-D
= ff eil('d-'{) Rcosze dQK dQK

1

The next expression, when expanded using previous results, gives
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. ——.——." '.—.
[f KK R o3 gan da
KK
. -T_. 1 t .
=7 [f KR cos s FIKIR oS 0% o g 49 sin ot do

><{10cos30cosae'-600secos36'-600539cos0'+6cosecos9'} .

Using the results of equations (B-3) and (B-5), one sees that the respective
integral products are just the negative of the corresponding terms in equation
(B-10) hence,

i(k-x')- R () B
[f KR 36dn dn c= -] HHF) R 3 5da do ,
K K K K
(B-15)
The next term to be considered involves cos®* 6. Referring to the
equations leading to equation (B-11), one notes that the terms contain cos 6,
where n=0, 2, 4. Analysis of equations (B-2), (B-4), and (B-6) shows

that all these terms are invariant under sign changes in the exponential factor;
hence,

(o) - R +i (k') R
ff eﬂ(KK)Rcos'iedQ aQ , = ffel(KK) cos* © dq aQ ,
K K KoK

(B-16)
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APPENDIX C
PROPAGATION VECTOR INTEGRALS

[ntroduction

In this appendix, the integrals over g and b (kR=Db, k'R =)
necessary in this calculation are evaluated using various techniques employed
to obtain the principal value of integral functions. Very few specific
references are given since most of the material can be found in standard
books on advanced calculus or complex variables. In evaluating integrals of
the type considered here, one assumes convergence at infinity in all cases
where the integral considered is evaluated over contours which include circular
paths at infinity. This requirement is necessary to obtain finite results for
this type of problem [1]. This aspect of the calculation could have been
treated by including in each integral over % and k' a convergence factor

e Iy lK, which would have guaranteed finite results during the various
integrations. After the integrations, this factor is removed by letting |y] =0
in the final results. This divergence results when the variation of the electro-
magnetic field within the atoms is not treated exactly; in fact, in the dipole-
dipole approximation elK' Ty , it is entirely neglected®, Casimir and
Polder [1] remove this divergence by explicitly introducing the factor e ly I
in their « and k' integrals. In this calculation, the addition of this factor
would only make things more cumbersome and so it is left out throughout

the discussion. Power and Zienau [4] only mention this convergence factor,
as is done here, to use the resulting integrals. [See equations (10) and (26)
of Reference 4. |

18. The electromagnetic vector potential is then assumed constant over
each atom.
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B-Integrals

_BEdp F(B)
(B +b) (8 - b)

Using the definition for F¥F(B) in terms of exponential functions, this integral
becomes

[>]
The first integral to be considered is given by f
0

ip

f’ﬁzdﬁw) =f°° B2dg {(;sznﬁ-i)eiﬁ_mz_ﬂe-l)e‘
g B+b)E-b) ) (B+D)(B-D) zip’

_ f°°dJ3(32+i,zL- 1)e Pt _f°° dg(p? - i - ek
5 2iB (B+b)(8-D) 2ig (8+b) (B - b)

Letting 8 — - in the second integral, one notes that the integrand changes
into the form of the first integral and the limifs change from (4+wo) to (-«).
Interchanging limits, the above two terms may be added to give

B

o0 i
dg(* +ip - 1)e . o 19 .
- . To obtain the principal value™’ of this integral, one
_ofo 2ig B+ D) (B-b) ~ prineip &

takes the following complex integral:

: o dz (2> +iz - 1e "
$r@) = ¢ 55, Z+b)(z-Db)

z=.b -gle z=b

evaluated around the indicated contour. Since no poles are enclosed, the above
complex integral vanishes; hence,

19. The explicit notation P,V, f will be used only when there is a question

as to the value of the integral being considered.
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~b-¢€ 0 i0 -€
Lim § | F(z=B)dz+fF(z=-b+ee )dz+ [ F(z=p)de

0 -L i ~-bt+e
T—co
0 . b-€ 0 .
+f F(z=€e19)dz+ f F(z=3)dz+f F(z=b+ eew)dz
T € 7w
L T 0
+ [ Fz=p)+ [ F(z=Le )dz { = 0
bte 0

Rearranging terms and assuming convergence at L — «, one obtains the
principal value (P.V.) of the desired integral by transposing terms. Hence,

+c0 -b-¢€ -€
P.V. [ dzF(z=§) = Lim [ F(zydz+ [ F(z)dz
~0c0 €—~0 -L -b+e
Ir»OO
b-¢ L
+ f F(z)dz + f F(z)dz
€ b+e

w , T .
= Lim f F(z=-b+ eew)dz + f F(z = Gew)dz
e~0 {0 0

T

+ [ Fz=b+ e’y dz
J

Substituting for z in each of the above integrals and interchanging limiting
and integral operations, the above becomes

e 7 rib | 1 ) ib
P.V, [ dzF(z=p) = St Vi | Pib- e

-0
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Hence,

) 2 . :
J (ﬁiclla?(g(fﬂb) ={ Sty PE ) ’ (e-1

The next integral that needs to be considered is similar to the one
just evaluated, with only F(B) replaced by G(8). Following a similar
procedure, this integral is given by

C_BdBGE) [ _m . im
f([“b)(ﬁ_b) ‘{2_}37+ > bG(b)} . (C-2)

where

ib -ib
1 ib-1 -ib -1
G+(b) - 5 {(1 Zi)e + (-1 21)e :,

The next integral expression is f Bdg F(B) < 1 Lt ) .

b+p3 B-Db
Rearranging the factors and fractions, the above quantity can be written as
f Bdp T (8 This integral is the same as the one considered
(B+hb) (B~ b)

previously; hence, the result is obtained directly, using equation (C-1).
The integral under consideration may also be evaluated by taking

1 1 . _ 1(B)
f gdp F(B) <b+ 5 + 5o b ) and separating F(8) as F(B) = 33 .
where I(B8) = (ﬁ sin 8 + 8 cos - sin B). Hence, this integral can be written

as f dp I(B) Eg- <b i 5 + 5 1_ b> . Expanding the fraction, this integral

2 1 1
becomes f dg I(B) {-% +F§<b-li-,8+ B-b)} . The last step may

be checked by simply collecting terms under a common denominator on both
fractions. Hence, one needs to evaluate three integrals given by
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2, i _ 1)olB 2 _ia qya-LlB
I1(B) = {L@ ha 13211)3 _ B lgi l)e } , the first integral may be
separated into two parts as follows:

o - ig 2 _ -ip
(B2+ip - 1)e - @Br-ip-1)e
of 2ip dﬁ'j 2iB dp

Letting g — -8 in the second term and interchanging the resulting limits of

‘o2 i
integration, the two parts combine into f (6" + 1*32 i_ﬁi) ° dg . Performing
(=] -0
the same operations on f %B( )i) and using the fact that I(8) = -I(-B),
0 - w
one can combine the remaining two integrals into L 16)d Thus,

bF ) (b+p)
the integral under consideration becomes -

) +eo . i
1 1 2 B2+ip - 1)e

1 ¢ 1()dg 1)
R _foo b+ ° " ® "_3@3—

Substituting for 1/8 and 1/ (b + 8) their respective principal value [20, 21]
defined as

TBP— = L(B) +in6(p) , =¢[p-(-b] +vino [p-(-m)] ,

(B + b)
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|

where
1 €
£(B) = Lim (_— ) , 06(8) E Lim —m——3— )
—0 B+ie €—0 T(B° + €°)

then one can evaluate the integrals by using the rules [20] for integrating
over the {(8) and &6(B8) functions. Taking the first integral, one obtains

o0 . ig
(B2 +ip - 1)e"
J 2ip 9

ig

[~ o] 2 . _
_ f dB_(ﬁ +1§i 1)e £(8)

(‘82 + ]-B - i)eilB -iE
21

+ir [ dp 6(3)

2+. _ iz 1 T
= Lim ¢ (Z211(§+11)e? tim (' 21)= - (—5)
e—0

-

where the first integral doesn't contribute since no poles are enclosed by the

contour?®, The next integral is evaluated as follows:

20. Note that in this case one must use the requirement of convergence at

infinity obtained by the implied convergence factor e lylz,
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j? 1(8)dp
(b + B)

—f “*m‘“e t[p - (-b)]

-b-ig *

© 2 _inp_ 1y 1B
_ f (B i 1B211)e é [B _ (—b)]
-

+ir [ 1(®)dp e [ - (b)]

e (z2+iz—1)eiz
"S? ¢ 21 B+ b+ic)
-iz =]
-iz-i)e ,
- Lim ¢ 21(34_b+l€) dz+1w_£ 1(8)dp 6B - (-b)]

e—~0

Since no poles are included in the contour corresponding to the first integral
above, its value is zero. In the second integral, the contour must be taken
over the negative half plane; hence, a pole is included within the contour.
Thuys, the value of this integral is obtained using the Residue Theorem.
Integrating over the &-function, the above expression becomes

[t oo

The integral containing the ¢ function is given by

-ib ib
. . ] -ib-1)e (b2+ib-1)e
im I(-b) = 17T{ 51 - 23
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ib . .
Noting that the terms containing e add, one finally obtains

I %)%‘13@) =L [(b2+ib— 1ye' P+ (1 - ib - 1)e'ib]

Collecting terms, the B integral under consideration is

b

< 1 1 2 7 m . i
_!; gdg F(B) <b+B + B-b>= -5 (_?>+2—b-§ [(b2+1b-1)e

+ (b - ib - 1)e_1b:|

H

[T;Tf +irh F (b) }

Combining the fractions on the left hand side of the above equation, one

obtains 2 f (Eiﬁb)F(;f)_ 5) " Dividing by the factor of 2, complete agree-
ment with equation (C-1) is obtained. The reason for including this alternate
method of handling this type of integrals is to provide a means of checking
some of the results and because sometimes this method is easier to apply.

The next integral is given by

. (b +p%) Bdg F(B) B2dB F(B8)
Jeae®® g = Tean ) Toep

Multiplying by (8 - b) on the numerator and denominator and interchanging
b and B on two of the terms, one obtains

(P+ph g*dp F(B) _B*dg F(p)
Jeaer® “ooay =2 mape-m 2 BrpG-ob
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The first of these integrals has already been evaluated; the other integral is
evaluated as follows:

f°° gtdg F(8)
§ ®+b)E-D)

L[ —fde 1(@@1 o1
"] B+b)B-D) B 21

C_ptdpF() 1 <ﬁ2—iﬁ—1> -ip
JEme-nF\ a )

_ 7 opdp@irip-ne |7 if
_f = Lim F(z=-b+e€e )dz
2 (B+Db)(B~Db) €0 Of

T .
+f F(z=b+eele)dz} ==
0

Combining terms, one obtains

b2+ 2
[ bdb F(b) [ gdp F(g) <——'3—b+ﬁ

2 [ Bdb F(b) lﬁ, +%TbF+(b) } +2 [ bdb F(b){’r—zi B F (b)

{wf bdb F(b) + 2ir [ b*db F(b) F (b) }

The integral corresponding to the above, but containing G(B8) instead of
F(B), is obtained directly from the above results.
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I

The next integrals of interest are given by

/ bab f pdp (bi,B ) [?(b) F(B) +4 F3(b) Fa(B)]

Multiplying by’ (b - 8) in the numerator and denominator of the above
expression and recombining as before, the above expression becomes

grdg{ F(b) F(B) + 4 Fa(b) F3(8)}
2 [ pab [ (b+8) (B - b)

i Bzdﬁf}-(ﬁ) Bzdﬁ F3(8)
=2 [ bdb Fb) [ 5 i E g + 8 S pap Fad) [ A

The B integrals are of the same form as the ones considered previously
with only ¥ (8) and F3(B) replacing F(B) and G(8). Following the steps
leading to equation (C-1), one notes that since F(8) and F3(8) have
different coefficients than F(B8), only the residue at g8 = 0 changes value.
This can be seen by considering these integrals as follows:

f°° B dp F(B)
i (B+p)@E-D)

~ }od[;’(iﬁ3 _28%-3ig +3)e
- 2ig(B +b) (B - Db)

B

—00

/L /M M\

T . -
= Lim l:f F(z=-b+ eele)dz z=-b -elte 2=b
e—0 LO

T i0 4 i
+f F(z = €e )dz+f F(z=b+ €e )dzJ R
0 0
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f°° B2dg F(8)
i ®+p)(B-D)

_mi (-ib3—2b2+3ib+3)e—1b+ 3w
- 2b* ' 2i (-2 b%)

ib
7i | (ib® - 2B - 3ib+ 3)e _ (3T im - )
+ l: = l—ﬁ-z)- +——z b¥ (b) } ;

2 b? 214
0 00 ib
B dB Fa(8) dJB(,82+3:LB—§)e1 B 3T im + }
Of<ﬁ+b)(6—b>“f (8 +b) (B -b) ‘{*(E?)*z”a(b)

(C-4)

Note that the sign change in the (37/2b%) term is due to the corresponding
sign change in the constant factors of the B polynomials in ¥(B8) and F3(B)
respectively. A similar integral occurs with exactly the same form as the
above term, being considered with only ¥ (8) replaced by ¥,(8). Since
F,(8) = B2 G(B) - 2 F3(8), which when expanded gives

i [(133_332-615+6)ei3 N (ip% + 3ﬁ2—613-6)e_iﬁ]
i 21 21 ‘

and noting that the residue at the origin contaings the constant factor in the
polynomial factor in B, the result for this integral is

(B +Db)(B-D)

£) 2 . . _
[ LE856) [ (2;;3@ S (b)]

0

The next group of B integrals are contained in the term

[ vab [ LLE 420 50" (F ) Fip) +2 Gb) Ga) |
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Expanding these factors and rearranging terms as before, the preceding
expression becomes

5 g2dg {F(b) F(8) + 2 G(b) G(B)}
{2fb‘”°f (b+ B) (8 - b)

3 gldg {F(b) F(B) + 2 G(b) G(B)}
+4 [ blab [ (b+B) (B - D)

g%dp {F(b) F(B) + 2 G(b) G(B)}
+2 [ bab | (b+ B) (B - b) }

Analysis of the above terms shows that only the last term needs to be
evaluated. Using the same procedure as before,

B

f°° AR F(E) f°° BdpEt+ip - 1)e
(
0 —co

N B S _
B+D) (B -D) 2i (3+b) (B - b) 5 PPF (b); . (C-5)

The next integral appears in the term given by

(b2 + %) { F(b) F(B) + 4 Fy(b) Fy(B) }

_ 3 B82dp {F(b) F(B) +4 Fy(b) F3()}
=2 Pav | (BB GE-DB)

Brdp{ F(b) F(B) + 4 F3(b) Fa(B)}
+2 [ bdb [ (8+Db) (B - D)

The first integral above has been evaluated previously. The second
integral is obtained as follows:
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f°° gdg 7 (g)

5 (B+P)(p-Db)
LT i T i iT g -
= Lim | [ F(z=-b+ee )dz+ [ F(z=b+ece )dz = = b*F 7 (b)
e~0 LO 0
Similar operations are used to obtain
¢ _BYApEi@)  _ [im 5+
Of Gibyp-b _lz" F3(b)} y (C-6)

The next integral group is found in the term

[ bav [ £ {bzﬁz ([F20) F28) + 2 G(v) GB)]

1
=y [£(b) £(8) + 12 F4(b) F4(8)

+ 24 Fy(b) F3(B)]>}

_ _Bidp
=2 [ Bldb [ Ty (Fa(B) Fa(8) + 2 G(b) Gip) )

«__p*ds
+2fbdbf(ﬁ+b)(ﬂ_b)

x |£(b) £(8) + 12 F4(b) F4(B) + 24 Fy(b) Fy(B))
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Using the fact that

1 24 21ip - 2)e'P 2 _gip - 2)e P
rae) =E§l:(ﬁ +218-2)¢'? (@ -z1- e ,

4 ;23 2 : i
£(8) =Ei5 [_([3 + 4ig —1232i+2413+24)e

_(Br-4ipd-12p% + 24ip+ 24)e'iBJ
21 ’

1] (18% - 542 - 1218 + 12)e' P (ig® - 587 - 1218 - 12)e P
54(B)=_B_5[(IB g -tzigriznel g - 56 - 121p - s9)e |

one can write the results for the above integrals in the order in which they
appear:

2 fb3db[F2(b) {1—2’1 b3 F-;(b)} + 2 G(b) [% b? G+(b)l ] ,
+2fbdb [f(b) [-%%+i—27rbf+(b)” ,

+2 [ bdb [125“4@)[_—(21—31 +%Tb3'4_(b)}:| ,

+2 [bdb [24 F3(b){ (23g +i77r bF;f(b)] ]

Integration and Transformation of b-Integrals

The b-integrals resulting from the g integrations are considered in
this section. In general, two types of integrals are considered. In some
cases the integral's principal value is obtained; whereas in other cases, the
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integral is simply transformed into another integral expression. This
behavior results from the fact that the evaluation of the b-integrals in closed
form is not possible [22]. The most one can do is express quantities in
terms of sine and cosine integrals defined by

x sinb X cosb
8, (x) =0f — db , C,(x) = f —=— db

<o

The principal value of the first integral to be considered is obtained
as follows: Taking

f°° db [(b2+3ib-3)e1b i (b - 3ib - 3)e P }

3 ab’ 2i 2i

and letting b — -b in the second term, the above expression becomes

f°° db (b +3ib-3)e "
ab® 21

=00

Using the contour indicated, this integral becomes

. A

f°° db (b%+3ib-3)e

ab® 21
-00

4 i0
= Lim| [ F(z=ce")dz . M
—E +e
€—0 0
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Using the L!' Hospital rule in carrying out the limiting operations, the

principal value of this integral is

f°° db (B +3ib-3)e " _ (___13_)
‘ab® 2i B 4a

~00

A similar procedure is used to evaluate the next integral, given by

f°° db | (b*+2ibd - 5b% - 6ib+ 3)e P
2ab’ 2i
0
(b — 2015 - 5b2+ 6ib+3)e 2P
- 2i
93
_ f°° do  (b*+2ik® - 5p% - 6ib+ 3)e 1h
B 2 ab® 2i
—C0
™
de . . _ T
_f 18 [-5+ 12+ (31) (21)] = 43)

The next integral is given by
f°° db (bt + 2ib% - 5b% - 6ib+ 3)e 1P
g 2ab(a+ b)? 21

_ (' - 2ib® - 5b*+ 6ib+ 3)e 2P
21
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Since the two parts of the above expression cannot be combined in the manner
used before, one evaluates each of the above terms by considering the
complex integral '

56 F(z) dz

= (z + 2iz - 57% - 6iz+ 3)e"
az(a + z)* 21

integrated around the indicated contour [23]. Since no poles are enclosed,
this integral is given by

L /2 .
¢ F(z)dz = Lim f F(z =b)dz + f F(z=Le16)dz
€—0 € 0
Lo
ie 0 .
+ [ F(z=iy)dz+ [ F(z=eel)dz | = 0
iL /2

Making use of the convergence at infinity requirement the following is
obtained:

L /2 . iL
Lim [ F(z=b)dz = Lim { [ F(z=€e10)dz+f F(z =iy)dz
e—0 ¢ e~0 \ 0 ie
P L0

The left-hand side of the above equation is just the principal value of the
integral under consideration; hence,
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f°° db (b4 + 21b% - 5B - 6ib+ 3)e 21P
3 2ab(a + b)¢ 21
3T . 1L=1y idy V+2y3+ 5%+ 6y + 3)e-2y
- (s'a3 + Lim a(iy) (a+iy)*” 21
e—0 ie=iy
I,—«»OO
3 2 d 2
_ T y 3 2 -4y
= (—3-8a) +0f PPTTPRSTIL W +2y3+ 572+ 6y + 3)e

-2ib
The term containing the e P s evaluated in the same manner, but the

corresponding complex integral 95 F(z)dz is evaluated, using the indicated
contour:

f°° db (Bt - 2ib% - 52+ 6ib+ 3)e 2 P
"0 2ab(a+ b)? 2i

- (57)

dy y

‘0f4(iy) (a -

iy)? (A + 250+ 552+ 6y + 3)e

Combining the above results, the integral being considered equals

o L ion? s 22 _
(37T) + f dy {(a - iy) (a+TlY) }x{y4+2y3+5y2+6y+3}e2y

-
4a .
0 4a(iy) (a2 + y?)
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Rearranging factors, one finally obtains

b

; db (b* + 2ib% - 5b% — 6ib+ 3)e-
§ 2ab(a + b)? 2i

(b - 2ib® - 5b% + 6ib + 3)e'21b }

2i
o0
= (—3—”3-) _f ;d—y——{y‘1+2y3+5y2+6y+3}e"2y
4a 2, 2,2
0 (a“ +y°)
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